52,066 research outputs found

    Riemannian Flows for Supervised and Unsupervised Geometric Image Labeling

    Get PDF
    In this thesis we focus on the image labeling problem, which is used as a subroutine in many image processing applications. Our work is based on the assignment flow which was recently introduced as a novel geometric approach to the image labeling problem. This flow evolves over time on the manifold of row-stochastic matrices, whose elements represent label assignments as assignment probabilities. The strict separation of assignment manifold and feature space enables the data to lie in any metric space, while a smoothing operation on the assignment manifold results in an unbiased and spatially regularized labeling. The first part of this work focuses on theoretical statements about the asymptotic behavior of the assignment flow. We show under weak assumptions on the parameters that the assignment flow for data in general position converges towards integral probabilities and thus ensures unique assignment decisions. Furthermore, we investigate the stability of possible limit points depending on the input data and parameters. For stable limits, we derive conditions that allow early evidence of convergence towards these limits and thus provide convergence guarantees. In the second part, we extend the assignment flow approach in order to impose global convex constraints on the labeling results based on linear filter statistics of the assignments. The corresponding filters are learned from examples using an eigendecomposition. The effectiveness of the approach is numerically demonstrated in several academic labeling scenarios. In the last part of this thesis we consider the situation in which no labels are given and therefore these prototypical elements have to be determined from the data as well. To this end we introduce an additional flow on the feature manifold, which is coupled to the assignment flow. The resulting flow adapts the prototypes in time to the assignment probabilities. The simultaneous adaptation and assignment of prototypes not only provides suitable prototypes, but also improves the resulting image segmentation, which is demonstrated by experiments. For this approach it is assumed that the data lie on a Riemannian manifold. We elaborate the approach for a range of manifolds that occur in applications and evaluate the resulting approaches in numerical experiments

    Inference and Model Parameter Learning for Image Labeling by Geometric Assignment

    Get PDF
    Image labeling is a fundamental problem in the area of low-level image analysis. In this work, we present novel approaches to maximum a posteriori (MAP) inference and model parameter learning for image labeling, respectively. Both approaches are formulated in a smooth geometric setting, whose respective solution space is a simple Riemannian manifold. Optimization consists of multiplicative updates that geometrically integrate the resulting Riemannian gradient flow. Our novel approach to MAP inference is based on discrete graphical models. By utilizing local Wasserstein distances for coupling assignment measures across edges of the underlying graph, we smoothly approximate a given discrete objective function and restrict it to the assignment manifold. A corresponding update scheme combines geometric integration of the resulting gradient flow, and rounding to integral solutions that represent valid labelings. This formulation constitutes an inner relaxation of the discrete labeling problem, i.e. throughout this process local marginalization constraints known from the established linear programming relaxation are satisfied. Furthermore, we study the inverse problem of model parameter learning using the linear assignment flow and training data with ground truth. This is accomplished by a Riemannian gradient flow on the manifold of parameters that determine the regularization properties of the assignment flow. This smooth formulation enables us to tackle the model parameter learning problem from the perspective of parameter estimation of dynamical systems. By using symplectic partitioned Runge--Kutta methods for numerical integration, we show that deriving the sensitivity conditions of the parameter learning problem and its discretization commute. A favorable property of our approach is that learning is based on exact inference

    Variational Approaches for Image Labeling on the Assignment Manifold

    Get PDF
    The image labeling problem refers to the task of assigning to each pixel a single element from a finite predefined set of labels. In classical approaches the labeling task is formulated as a minimization problem of specifically structured objective functions. Assignment flows for contextual image labeling are a recently proposed alternative formulation via spatially coupled replicator equations. In this work, the classical and dynamical viewpoint of image labeling are combined into a variational formulation. This is accomplished by following the induced Riemannian gradient descent flow on an elementary statistical manifold with respect to the underlying information geometry. Convergence and stability behavior of this approach are investigated using the log-barrier method. A novel parameterization of the assignment flow by its dominant component is derived, revealing a Riemannian gradient flow structure that clearly identifies the two governing processes of the flow: spatial regularization of assignments and gradual enforcement of unambiguous label decisions. Also, a continuous-domain formulation of the corresponding potential is presented and well-posedness of the related optimization problem is established. Furthermore, an alternative smooth variational approach to maximum a-posteriori inference based on discrete graphical models is derived by utilizing local Wasserstein distances. Following the resulting Riemannian gradient flow leads to an inference process which always satisfies the local marginalization constraints and incorporates a smooth rounding mechanism towards unambiguous assignments

    Clothing Co-Parsing by Joint Image Segmentation and Labeling

    Full text link
    This paper aims at developing an integrated system of clothing co-parsing, in order to jointly parse a set of clothing images (unsegmented but annotated with tags) into semantic configurations. We propose a data-driven framework consisting of two phases of inference. The first phase, referred as "image co-segmentation", iterates to extract consistent regions on images and jointly refines the regions over all images by employing the exemplar-SVM (E-SVM) technique [23]. In the second phase (i.e. "region co-labeling"), we construct a multi-image graphical model by taking the segmented regions as vertices, and incorporate several contexts of clothing configuration (e.g., item location and mutual interactions). The joint label assignment can be solved using the efficient Graph Cuts algorithm. In addition to evaluate our framework on the Fashionista dataset [30], we construct a dataset called CCP consisting of 2098 high-resolution street fashion photos to demonstrate the performance of our system. We achieve 90.29% / 88.23% segmentation accuracy and 65.52% / 63.89% recognition rate on the Fashionista and the CCP datasets, respectively, which are superior compared with state-of-the-art methods.Comment: 8 pages, 5 figures, CVPR 201

    Coplanar Repeats by Energy Minimization

    Full text link
    This paper proposes an automated method to detect, group and rectify arbitrarily-arranged coplanar repeated elements via energy minimization. The proposed energy functional combines several features that model how planes with coplanar repeats are projected into images and captures global interactions between different coplanar repeat groups and scene planes. An inference framework based on a recent variant of α\alpha-expansion is described and fast convergence is demonstrated. We compare the proposed method to two widely-used geometric multi-model fitting methods using a new dataset of annotated images containing multiple scene planes with coplanar repeats in varied arrangements. The evaluation shows a significant improvement in the accuracy of rectifications computed from coplanar repeats detected with the proposed method versus those detected with the baseline methods.Comment: 14 pages with supplemental materials attache

    Social Tagging: Exploring the Image, the Tags, and the Game

    Get PDF
    An increasing amount of images are being uploaded, shared, and retrieved on the Web. These large image collections need to be properly stored, organized and easily retrieved. Tags have a key role in image retrieval but it is difficult for those who upload the images to also undertake the quality tag assignment for potential future retrieval by others. Relying on professional keyword assignment is not a practical option for large image collections due to resource constraints. Although a number of content-based image retrieval systems have been launched, they have not demonstrated sufficient utility on large-scale image sources on the web, and are usually used as a supplement to existing text-based image retrieval systems. An alternative to professional image indexing can be social tagging -- with two major types being photo-sharing networks and image labeling games. Here we analyze these applications to evaluate their usefulness from the semantic point of view. We also investigate whether social tagging behaviour can be managed. The findings of the study have shown that social tagging can generate a sizeable number of tags that can be classified as interpretive for an image, and that tagging behaviour has a manageable and adjustable nature depending on tagging guidelines
    • …
    corecore