148 research outputs found

    The Affine Uncertainty Principle, Associated Frames and Applications in Signal Processing

    Get PDF
    Uncertainty relations play a prominent role in signal processing, stating that a signal can not be simultaneously concentrated in the two related domains of the corresponding phase space. In particular, a new uncertainty principle for the affine group, which is directly related to the wavelet transform has lead to a new minimizing waveform. In this thesis, a frame construction is proposed which leads to approximately tight frames based on this minimizing waveform. Frame properties such as the diagonality of the frame operator as well as lower and upper frame bounds are analyzed. Additionally, three applications of such frame constructions are introduced: inpainting of missing audio data, detection of neuronal spikes in extracellular recorded data and peak detection in MALDI imaging data

    ImageSpirit: Verbal Guided Image Parsing

    Get PDF
    Humans describe images in terms of nouns and adjectives while algorithms operate on images represented as sets of pixels. Bridging this gap between how humans would like to access images versus their typical representation is the goal of image parsing, which involves assigning object and attribute labels to pixel. In this paper we propose treating nouns as object labels and adjectives as visual attribute labels. This allows us to formulate the image parsing problem as one of jointly estimating per-pixel object and attribute labels from a set of training images. We propose an efficient (interactive time) solution. Using the extracted labels as handles, our system empowers a user to verbally refine the results. This enables hands-free parsing of an image into pixel-wise object/attribute labels that correspond to human semantics. Verbally selecting objects of interests enables a novel and natural interaction modality that can possibly be used to interact with new generation devices (e.g. smart phones, Google Glass, living room devices). We demonstrate our system on a large number of real-world images with varying complexity. To help understand the tradeoffs compared to traditional mouse based interactions, results are reported for both a large scale quantitative evaluation and a user study.Comment: http://mmcheng.net/imagespirit

    Mathematical Challenges in Electron Microscopy

    Get PDF
    Development of electron microscopes first started nearly 100 years ago and they are now a mature imaging modality with many applications and vast potential for the future. The principal feature of electron microscopes is their resolution; they can be up to 1000 times more powerful than a visible light microscope and resolve even the smallest atoms. Furthermore, electron microscopes are also sensitive to many material properties due to the very rich interactions between electrons and other matter. Because of these capabilities, electron microscopy is used in applications as diverse as drug discovery, computer chip manufacture, and the development of solar cells. In parallel to this, the mathematical field of inverse problems has also evolved dramatically. Many new methods have been introduced to improve the recovery of unknown structures from indirect data, typically an ill-posed problem. In particular, sparsity promoting functionals such as the total variation and its extensions have been shown to be very powerful for recovering accurate physical quantities from very little and/or poor quality data. While sparsity-promoting reconstruction methods are powerful, they can also be slow, especially in a big-data setting. This trade-off forms an eternal cycle as new numerical tools are found and more powerful models are developed. The work presented in this thesis aims to marry the tools of inverse problems with the problems of electron microscopy: bringing state-of-the-art image processing techniques to bear on challenges specific to electron microscopy, developing new optimisation methods for these problems, and modelling new inverse problems to extend the capabilities of existing microscopes. One focus is the application of a directional total variation to overcome the limited angle problem in electron tomography, another is the proposal of a new inverse problem for the reconstruction of 3D strain tensor fields from electron microscopy diffraction data. The remaining contributions target numerical aspects of inverse problems, from new algorithms for non-convex problems to convex optimisation with adaptive meshes.Cantab Capital Institute for Mathematics of Informatio

    A survey of uncertainty principles and some signal processing applications

    Full text link
    The goal of this paper is to review the main trends in the domain of uncertainty principles and localization, emphasize their mutual connections and investigate practical consequences. The discussion is strongly oriented towards, and motivated by signal processing problems, from which significant advances have been made recently. Relations with sparse approximation and coding problems are emphasized
    corecore