877 research outputs found

    Sketching-out virtual humans: From 2d storyboarding to immediate 3d character animation

    Get PDF
    Virtual beings are playing a remarkable role in today’s public entertainment, while ordinary users are still treated as audiences due to the lack of appropriate expertise, equipment, and computer skills. In this paper, we present a fast and intuitive storyboarding interface, which enables users to sketch-out 3D virtual humans, 2D/3D animations, and character intercommunication. We devised an intuitive “stick figurefleshing-outskin mapping” graphical animation pipeline, which realises the whole process of key framing, 3D pose reconstruction, virtual human modelling, motion path/timing control, and the final animation synthesis by almost pure 2D sketching. A “creative model-based method” is developed, which emulates a human perception process, to generate the 3D human bodies of variational sizes, shapes, and fat distributions. Meanwhile, our current system also supports the sketch-based crowd animation and the storyboarding of the 3D multiple character intercommunication. This system has been formally tested by various users on Tablet PC. After minimal training, even a beginner can create vivid virtual humans and animate them within minutes

    Building geometric models with hand-drawn sketches

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Architecture, 1998.Includes bibliographical references (p. 49-51).Architects work on drawings and models, not buildings. Today, in many architectural practices, drawings and models are produced in digital format using Computer-aided Design (CAD) tools. Unquestionably, digital media have changed the way in which many architects perform their day to day activities. But these changes have been limited to the more prosaic aspects of practice. To be sure, CAD systems have made the daily operations of many design offices more efficient; nevertheless, they have been of little use - and indeed are often a hindrance - in situations where the task at hand is more conjectural and speculative in nature, as it is during the early stages of a project. Well-intentioned efforts to insinuate CAD into these aspects of practice have only served to reveal the incongruities between the demands of designer and the configuration of the available tools. One of the chief attributes of design practice is that it is action performed at a distance through the agency of representations. This fundamental trait implies that we have to understand how computers help architects describe buildings if we are to understand how they might help architects design buildings. As obvious as this claim might seem, CAD programs can be almost universally characterized by a tacit denigration of visual representation. In this thesis, I examine properties of design drawings that make them useful to architects. I go on to describe a computer program that I have written that allows a designer to build geometric models using freehand sketches. This program illustrates that it is possible to design a software tool in a way that profits from, rather than negates, the power of visual representations.by Ewan E. Branda.M.S

    Stereoscopic Sketchpad: 3D Digital Ink

    Get PDF
    --Context-- This project looked at the development of a stereoscopic 3D environment in which a user is able to draw freely in all three dimensions. The main focus was on the storage and manipulation of the ‘digital ink’ with which the user draws. For a drawing and sketching package to be effective it must not only have an easy to use user interface, it must be able to handle all input data quickly and efficiently so that the user is able to focus fully on their drawing. --Background-- When it comes to sketching in three dimensions the majority of applications currently available rely on vector based drawing methods. This is primarily because the applications are designed to take a users two dimensional input and transform this into a three dimensional model. Having the sketch represented as vectors makes it simpler for the program to act upon its geometry and thus convert it to a model. There are a number of methods to achieve this aim including Gesture Based Modelling, Reconstruction and Blobby Inflation. Other vector based applications focus on the creation of curves allowing the user to draw within or on existing 3D models. They also allow the user to create wire frame type models. These stroke based applications bring the user closer to traditional sketching rather than the more structured modelling methods detailed. While at present the field is inundated with vector based applications mainly focused upon sketch-based modelling there are significantly less voxel based applications. The majority of these applications focus on the deformation and sculpting of voxmaps, almost the opposite of drawing and sketching, and the creation of three dimensional voxmaps from standard two dimensional pixmaps. How to actually sketch freely within a scene represented by a voxmap has rarely been explored. This comes as a surprise when so many of the standard 2D drawing programs in use today are pixel based. --Method-- As part of this project a simple three dimensional drawing program was designed and implemented using C and C++. This tool is known as Sketch3D and was created using a Model View Controller (MVC) architecture. Due to the modular nature of Sketch3Ds system architecture it is possible to plug a range of different data structures into the program to represent the ink in a variety of ways. A series of data structures have been implemented and were tested for efficiency. These structures were a simple list, a 3D array, and an octree. They have been tested for: the time it takes to insert or remove points from the structure; how easy it is to manipulate points once they are stored; and also how the number of points stored effects the draw and rendering times. One of the key issues brought up by this project was devising a means by which a user is able to draw in three dimensions while using only two dimensional input devices. The method settled upon and implemented involves using the mouse or a digital pen to sketch as one would in a standard 2D drawing package but also linking the up and down keyboard keys to the current depth. This allows the user to move in and out of the scene as they draw. A couple of user interface tools were also developed to assist the user. A 3D cursor was implemented and also a toggle, which when on, highlights all of the points intersecting the depth plane on which the cursor currently resides. These tools allow the user to see exactly where they are drawing in relation to previously drawn lines. --Results-- The tests conducted on the data structures clearly revealed that the octree was the most effective data structure. While not the most efficient in every area, it manages to avoid the major pitfalls of the other structures. The list was extremely quick to render and draw to the screen but suffered severely when it comes to finding and manipulating points already stored. In contrast the three dimensional array was able to erase or manipulate points effectively while the draw time rendered the structure effectively useless, taking huge amounts of time to draw each frame. The focus of this research was on how a 3D sketching package would go about storing and accessing the digital ink. This is just a basis for further research in this area and many issues touched upon in this paper will require a more in depth analysis. The primary area of this future research would be the creation of an effective user interface and the introduction of regular sketching package features such as the saving and loading of images

    Sketchbook as an architectural design instrument of the cognitive creation process for the quality of place

    Get PDF
    The paper explores possibilities for using sketchbook in architect’s education as an architectural design instrument for the cognitive creation processes for the production of quality of place. We strongly believe that for the architect’s education and future professional work, unconscious mental cognitive processes could be best captured by freehand drawing and sketching, beside conscious cognitive mental activities of perception, thinking, understanding, judgment and reasoning. This paper presents possibilities and results of new designed and tested teaching concepts and methods for the architectural design based on the course Sketchbook – Drawn Thoughts which form the part of the curriculum at the Master level of studies at the University of Belgrade Faculty of Architecture. As famous architects refer to sketches as the beginnings for the development and formulation of conceptions of architectural design, freehand drawings represent materialization of visual mental images and visions based both on rational thinking and on the impressions influenced by other human senses such as hearing, relaxing and sensing. Five mentors tested their respective different methods on students using sketchbook as an architectural design instrument, each one revealing different, yet interesting outcomes that led to conclusions of variety of outputs which might be useful for the cognitive creation processes within the architect’s education processes. We will show these methods and their application on student’s work and the results originated from such an approach. At the end of the paper, based on our research, we will set conclusions and recommendations both for the architect’s education processes and practice of creation of place as the profession’s ultimate goal

    3D Shape Reconstruction from Sketches via Multi-view Convolutional Networks

    Full text link
    We propose a method for reconstructing 3D shapes from 2D sketches in the form of line drawings. Our method takes as input a single sketch, or multiple sketches, and outputs a dense point cloud representing a 3D reconstruction of the input sketch(es). The point cloud is then converted into a polygon mesh. At the heart of our method lies a deep, encoder-decoder network. The encoder converts the sketch into a compact representation encoding shape information. The decoder converts this representation into depth and normal maps capturing the underlying surface from several output viewpoints. The multi-view maps are then consolidated into a 3D point cloud by solving an optimization problem that fuses depth and normals across all viewpoints. Based on our experiments, compared to other methods, such as volumetric networks, our architecture offers several advantages, including more faithful reconstruction, higher output surface resolution, better preservation of topology and shape structure.Comment: 3DV 2017 (oral
    corecore