62,759 research outputs found

    Cooperative subcarrier sensing using antenna diversity based weighted virtual sub clustering

    Get PDF
    The idea of cooperation and the clustering amongst cognitive radios (CRs) has recently been focus of attention of research community, owing to its potential to improve performance of spectrum sensing (SS) schemes. This focus has led to the paradigm of cluster based cooperative spectrum sensing (CBCSS). In perspective of high date rate 4th generation wireless systems, which are characterized by orthogonal frequency division multiplexing (OFDM) and spatial diversity, there is a need to devise effective SS strategies. A novel CBCSS scheme is proposed for OFDM subcarrier detection in order to enable the non-contiguous OFDM (NC-OFDM) at the physical layer of CRs for efficient utilization of spectrum holes. Proposed scheme is based on the energy detection in MIMO CR network, using equal gain combiner as diversity combining technique, hard combining (AND, OR and Majority) rule as data fusion technique and antenna diversity based weighted clustering as virtual sub clustering algorithm. Results of proposed CBCSS are compared with conventional CBCSS scheme for AND, OR and Majority data fusion rules. Moreover the effects of antenna diversity, cooperation and cooperating clusters are also discussed

    Image fusion in the JPEG 2000 domain

    Get PDF

    A Fusion Framework for Camouflaged Moving Foreground Detection in the Wavelet Domain

    Full text link
    Detecting camouflaged moving foreground objects has been known to be difficult due to the similarity between the foreground objects and the background. Conventional methods cannot distinguish the foreground from background due to the small differences between them and thus suffer from under-detection of the camouflaged foreground objects. In this paper, we present a fusion framework to address this problem in the wavelet domain. We first show that the small differences in the image domain can be highlighted in certain wavelet bands. Then the likelihood of each wavelet coefficient being foreground is estimated by formulating foreground and background models for each wavelet band. The proposed framework effectively aggregates the likelihoods from different wavelet bands based on the characteristics of the wavelet transform. Experimental results demonstrated that the proposed method significantly outperformed existing methods in detecting camouflaged foreground objects. Specifically, the average F-measure for the proposed algorithm was 0.87, compared to 0.71 to 0.8 for the other state-of-the-art methods.Comment: 13 pages, accepted by IEEE TI
    • …
    corecore