189 research outputs found

    Exploring plenoptic properties of correlation imaging with chaotic light

    Full text link
    In a setup illuminated by chaotic light, we consider different schemes that enable to perform imaging by measuring second-order intensity correlations. The most relevant feature of the proposed protocols is the ability to perform plenoptic imaging, namely to reconstruct the geometrical path of light propagating in the system, by imaging both the object and the focusing element. This property allows to encode, in a single data acquisition, both multi-perspective images of the scene and light distribution in different planes between the scene and the focusing element. We unveil the plenoptic property of three different setups, explore their refocusing potentialities and discuss their practical applications.Comment: 9 pages, 4 figure

    Light field super resolution through controlled micro-shifts of light field sensor

    Get PDF
    Light field cameras enable new capabilities, such as post-capture refocusing and aperture control, through capturing directional and spatial distribution of light rays in space. Micro-lens array based light field camera design is often preferred due to its light transmission efficiency, cost-effectiveness and compactness. One drawback of the micro-lens array based light field cameras is low spatial resolution due to the fact that a single sensor is shared to capture both spatial and angular information. To address the low spatial resolution issue, we present a light field imaging approach, where multiple light fields are captured and fused to improve the spatial resolution. For each capture, the light field sensor is shifted by a pre-determined fraction of a micro-lens size using an XY translation stage for optimal performance

    A novel disparity-assisted block matching-based approach for super-resolution of light field images

    Get PDF
    Currently, available plenoptic imaging technology has limited resolution. That makes it challenging to use this technology in applications, where sharpness is essential, such as film industry. Previous attempts aimed at enhancing the spatial resolution of plenoptic light field (LF) images were based on block and patch matching inherited from classical image super-resolution, where multiple views were considered as separate frames. By contrast to these approaches, a novel super-resolution technique is proposed in this paper with a focus on exploiting estimated disparity information to reduce the matching area in the super-resolution process. We estimate the disparity information from the interpolated LR view point images (VPs). We denote our method as light field block matching super-resolution. We additionally combine our novel super-resolution method with directionally adaptive image interpolation from [1] to preserve sharpness of the high-resolution images. We prove a steady gain in the PSNR and SSIM quality of the super-resolved images for the resolution enhancement factor 8x8 as compared to the recent approaches and also to our previous work [2]

    Efficient and Accurate Disparity Estimation from MLA-Based Plenoptic Cameras

    Get PDF
    This manuscript focuses on the processing images from microlens-array based plenoptic cameras. These cameras enable the capturing of the light field in a single shot, recording a greater amount of information with respect to conventional cameras, allowing to develop a whole new set of applications. However, the enhanced information introduces additional challenges and results in higher computational effort. For one, the image is composed of thousand of micro-lens images, making it an unusual case for standard image processing algorithms. Secondly, the disparity information has to be estimated from those micro-images to create a conventional image and a three-dimensional representation. Therefore, the work in thesis is devoted to analyse and propose methodologies to deal with plenoptic images. A full framework for plenoptic cameras has been built, including the contributions described in this thesis. A blur-aware calibration method to model a plenoptic camera, an optimization method to accurately select the best microlenses combination, an overview of the different types of plenoptic cameras and their representation. Datasets consisting of both real and synthetic images have been used to create a benchmark for different disparity estimation algorithm and to inspect the behaviour of disparity under different compression rates. A robust depth estimation approach has been developed for light field microscopy and image of biological samples

    Light field image processing : overview and research issues

    Get PDF
    Light field (LF) imaging first appeared in the computer graphics community with the goal of photorealistic 3D rendering [1]. Motivated by a variety of potential applications in various domains (e.g., computational photography, augmented reality, light field microscopy, medical imaging, 3D robotic, particle image velocimetry), imaging from real light fields has recently gained in popularity, both at the research and industrial level.peer-reviewe

    From Calibration to Large-Scale Structure from Motion with Light Fields

    Get PDF
    Classic pinhole cameras project the multi-dimensional information of the light flowing through a scene onto a single 2D snapshot. This projection limits the information that can be reconstructed from the 2D acquisition. Plenoptic (or light field) cameras, on the other hand, capture a 4D slice of the plenoptic function, termed the “light field”. These cameras provide both spatial and angular information on the light flowing through a scene; multiple views are captured in a single photographic exposure facilitating various applications. This thesis is concerned with the modelling of light field (or plenoptic) cameras and the development of structure from motion pipelines using such cameras. Specifically, we develop a geometric model for a multi-focus plenoptic camera, followed by a complete pipeline for the calibration of the suggested model. Given a calibrated light field camera, we then remap the captured light field to a grid of pinhole images. We use these images to obtain metric 3D reconstruction through a novel framework for structure from motion with light fields. Finally, we suggest a linear and efficient approach for absolute pose estimation for light fields

    Light Field compression and manipulation via residual convolutional neural network

    Get PDF
    Light field (LF) imaging has gained significant attention due to its recent success in microscopy, 3-dimensional (3D) displaying and rendering, augmented and virtual reality usage. Postprocessing of LF enables us to extract more information from a scene compared to traditional cameras. However, the use of LF is still a research novelty because of the current limitations in capturing high-resolution LF in all of its four dimensions. While researchers are actively improving methods of capturing high-resolution LF\u27s, using simulation, it is possible to explore a high-quality captured LF\u27s properties. The immediate concerns following the LF capture are its storage and processing time. A rich LF occupies a large chunk of memory ---order of multiple gigabytes per LF---. Also, most feature extraction techniques associated with LF postprocessing involve multi-dimensional integration that requires access to the whole LF and is usually time-consuming. Recent advancements in computer processing units made it possible to simulate realistic images using physical-based rendering software. In this work, at first, a transformation function is proposed for building a camera array (CA) to capture the same portion of LF from a scene that a standard plenoptic camera (SPC) can acquire. Using this transformation, LF simulation with similar properties as a plenoptic camera will become trivial in any rendering software. Artificial intelligence (AI) and machine learning (ML) algorithms ---when deployed on the new generation of GPUs--- are faster than ever. It is possible to generate and train large networks with millions of trainable parameters to learn very complex features. Here, residual convolutional neural network (RCNN) structures are employed to build complex networks for compression and feature extraction from an LF. By combining state-of-the-art image compression and RCNN, I have created a compression pipeline. The proposed pipeline\u27s bit per pixel (bpp) ratio is 0.0047 on average. I show that with a 1% compression time cost and 18x speedup for decompression, our methods reconstructed LFs have better structural similarity index metric (SSIM) and comparable peak signal-to-noise ratio (PSNR) compared to the state-of-the-art video compression techniques used to compress LFs. In the end, using RCNN, I created a network called RefNet, for extracting a group of 16 refocused images from a raw LF. The training parameters of the 16 LFs are set to (\alpha=0.125, 0.250, 0.375, ..., 2.0) for training. I show that RefNet is 134x faster than the state-of-the-art refocusing technique. The RefNet is also superior in color prediction compared to the state-of-the-art ---Fourier slice and shift-and-sum--- methods
    • …
    corecore