39,996 research outputs found

    Event-based Vision: A Survey

    Get PDF
    Event cameras are bio-inspired sensors that differ from conventional frame cameras: Instead of capturing images at a fixed rate, they asynchronously measure per-pixel brightness changes, and output a stream of events that encode the time, location and sign of the brightness changes. Event cameras offer attractive properties compared to traditional cameras: high temporal resolution (in the order of microseconds), very high dynamic range (140 dB vs. 60 dB), low power consumption, and high pixel bandwidth (on the order of kHz) resulting in reduced motion blur. Hence, event cameras have a large potential for robotics and computer vision in challenging scenarios for traditional cameras, such as low-latency, high speed, and high dynamic range. However, novel methods are required to process the unconventional output of these sensors in order to unlock their potential. This paper provides a comprehensive overview of the emerging field of event-based vision, with a focus on the applications and the algorithms developed to unlock the outstanding properties of event cameras. We present event cameras from their working principle, the actual sensors that are available and the tasks that they have been used for, from low-level vision (feature detection and tracking, optic flow, etc.) to high-level vision (reconstruction, segmentation, recognition). We also discuss the techniques developed to process events, including learning-based techniques, as well as specialized processors for these novel sensors, such as spiking neural networks. Additionally, we highlight the challenges that remain to be tackled and the opportunities that lie ahead in the search for a more efficient, bio-inspired way for machines to perceive and interact with the world

    Video Registration in Egocentric Vision under Day and Night Illumination Changes

    Full text link
    With the spread of wearable devices and head mounted cameras, a wide range of application requiring precise user localization is now possible. In this paper we propose to treat the problem of obtaining the user position with respect to a known environment as a video registration problem. Video registration, i.e. the task of aligning an input video sequence to a pre-built 3D model, relies on a matching process of local keypoints extracted on the query sequence to a 3D point cloud. The overall registration performance is strictly tied to the actual quality of this 2D-3D matching, and can degrade if environmental conditions such as steep changes in lighting like the ones between day and night occur. To effectively register an egocentric video sequence under these conditions, we propose to tackle the source of the problem: the matching process. To overcome the shortcomings of standard matching techniques, we introduce a novel embedding space that allows us to obtain robust matches by jointly taking into account local descriptors, their spatial arrangement and their temporal robustness. The proposal is evaluated using unconstrained egocentric video sequences both in terms of matching quality and resulting registration performance using different 3D models of historical landmarks. The results show that the proposed method can outperform state of the art registration algorithms, in particular when dealing with the challenges of night and day sequences

    Unmanned Aerial Systems for Wildland and Forest Fires

    Full text link
    Wildfires represent an important natural risk causing economic losses, human death and important environmental damage. In recent years, we witness an increase in fire intensity and frequency. Research has been conducted towards the development of dedicated solutions for wildland and forest fire assistance and fighting. Systems were proposed for the remote detection and tracking of fires. These systems have shown improvements in the area of efficient data collection and fire characterization within small scale environments. However, wildfires cover large areas making some of the proposed ground-based systems unsuitable for optimal coverage. To tackle this limitation, Unmanned Aerial Systems (UAS) were proposed. UAS have proven to be useful due to their maneuverability, allowing for the implementation of remote sensing, allocation strategies and task planning. They can provide a low-cost alternative for the prevention, detection and real-time support of firefighting. In this paper we review previous work related to the use of UAS in wildfires. Onboard sensor instruments, fire perception algorithms and coordination strategies are considered. In addition, we present some of the recent frameworks proposing the use of both aerial vehicles and Unmanned Ground Vehicles (UV) for a more efficient wildland firefighting strategy at a larger scale.Comment: A recent published version of this paper is available at: https://doi.org/10.3390/drones501001

    Attention and Anticipation in Fast Visual-Inertial Navigation

    Get PDF
    We study a Visual-Inertial Navigation (VIN) problem in which a robot needs to estimate its state using an on-board camera and an inertial sensor, without any prior knowledge of the external environment. We consider the case in which the robot can allocate limited resources to VIN, due to tight computational constraints. Therefore, we answer the following question: under limited resources, what are the most relevant visual cues to maximize the performance of visual-inertial navigation? Our approach has four key ingredients. First, it is task-driven, in that the selection of the visual cues is guided by a metric quantifying the VIN performance. Second, it exploits the notion of anticipation, since it uses a simplified model for forward-simulation of robot dynamics, predicting the utility of a set of visual cues over a future time horizon. Third, it is efficient and easy to implement, since it leads to a greedy algorithm for the selection of the most relevant visual cues. Fourth, it provides formal performance guarantees: we leverage submodularity to prove that the greedy selection cannot be far from the optimal (combinatorial) selection. Simulations and real experiments on agile drones show that our approach ensures state-of-the-art VIN performance while maintaining a lean processing time. In the easy scenarios, our approach outperforms appearance-based feature selection in terms of localization errors. In the most challenging scenarios, it enables accurate visual-inertial navigation while appearance-based feature selection fails to track robot's motion during aggressive maneuvers.Comment: 20 pages, 7 figures, 2 table

    Dynamic Body VSLAM with Semantic Constraints

    Full text link
    Image based reconstruction of urban environments is a challenging problem that deals with optimization of large number of variables, and has several sources of errors like the presence of dynamic objects. Since most large scale approaches make the assumption of observing static scenes, dynamic objects are relegated to the noise modeling section of such systems. This is an approach of convenience since the RANSAC based framework used to compute most multiview geometric quantities for static scenes naturally confine dynamic objects to the class of outlier measurements. However, reconstructing dynamic objects along with the static environment helps us get a complete picture of an urban environment. Such understanding can then be used for important robotic tasks like path planning for autonomous navigation, obstacle tracking and avoidance, and other areas. In this paper, we propose a system for robust SLAM that works in both static and dynamic environments. To overcome the challenge of dynamic objects in the scene, we propose a new model to incorporate semantic constraints into the reconstruction algorithm. While some of these constraints are based on multi-layered dense CRFs trained over appearance as well as motion cues, other proposed constraints can be expressed as additional terms in the bundle adjustment optimization process that does iterative refinement of 3D structure and camera / object motion trajectories. We show results on the challenging KITTI urban dataset for accuracy of motion segmentation and reconstruction of the trajectory and shape of moving objects relative to ground truth. We are able to show average relative error reduction by a significant amount for moving object trajectory reconstruction relative to state-of-the-art methods like VISO 2, as well as standard bundle adjustment algorithms
    corecore