256 research outputs found

    Synchronization of spatiotemporal semiconductor lasers and its application in color image encryption

    Full text link
    Optical chaos is a topic of current research characterized by high-dimensional nonlinearity which is attributed to the delay-induced dynamics, high bandwidth and easy modular implementation of optical feedback. In light of these facts, which adds enough confusion and diffusion properties for secure communications, we explore the synchronization phenomena in spatiotemporal semiconductor laser systems. The novel system is used in a two-phase colored image encryption process. The high-dimensional chaotic attractor generated by the system produces a completely randomized chaotic time series, which is ideal in the secure encoding of messages. The scheme thus illustrated is a two-phase encryption method, which provides sufficiently high confusion and diffusion properties of chaotic cryptosystem employed with unique data sets of processed chaotic sequences. In this novel method of cryptography, the chaotic phase masks are represented as images using the chaotic sequences as the elements of the image. The scheme drastically permutes the positions of the picture elements. The next additional layer of security further alters the statistical information of the original image to a great extent along the three-color planes. The intermediate results during encryption demonstrate the infeasibility for an unauthorized user to decipher the cipher image. Exhaustive statistical tests conducted validate that the scheme is robust against noise and resistant to common attacks due to the double shield of encryption and the infinite dimensionality of the relevant system of partial differential equations.Comment: 20 pages, 11 figures; Article in press, Optics Communications (2011

    Secured Audio Signal Transmission in 5G Compatible mmWave Massive MIMO FBMC System with Implementation of Audio-to-image Transformation Aided Encryption Scheme

    Get PDF
    In this paper, we have made comprehensive study for the performance evaluation of mmWave massive MIMO FBMC wireless communication system. The 165F2;56 large MIMO antenna configured simulated system under investigation incorporates three modern channel coding (Turbo, LDPC and (3, 2) SPC, higher order digital modulation (256-QAM)) and various signal detection (Q-Less QR, Lattice Reduction(LR) based Zero-forcing(ZF), Lattice Reduction (LR) based ZF-SIC and Complex-valued LLL(CLLL) algorithm implemented ZF-SIC) schemes. An audio to image conversion aided chaos-based physical layer security scheme has also been implemented in such study. On considering transmission of encrypted audio signal in a hostile fading channel, it is noticeable from MATLAB based simulation study that the LDPC Channel encoded system is very much robust and effective in retrieving color image under utilization of Lattice Reduction(LR) based ZF-SIC signal detection and 16- QAM digital modulation techniques

    Roadmap on optical security

    Get PDF
    Postprint (author's final draft

    Constructing multiwing attractors from a robust chaotic system with non-hyperbolic equilibrium points

    Get PDF
    We investigate a three-dimensional (3D) robust chaotic system which only holds two nonhyperbolic equilibrium points, and finds the complex dynamical behaviour of position modulation beyond amplitude modulation. To extend the application of this chaotic system, we initiate a novel methodology to construct multiwing chaotic attractors by modifying the position and amplitude parameters. Moreover, the signal amplitude, range and distance of the generated multiwings can be easily adjusted by using the control parameters, which enable us to enhance the potential application in chaotic cryptography and secure communication. The effectiveness of the theoretical analyses is confirmed by numerical simulations. Particularly, the multiwing attractor is physically realized by using DSP (digital signal processor) chip

    Hiding text in speech signal using K-means, LSB techniques and chaotic maps

    Get PDF
    In this paper, a new technique that hides a secret text inside a speech signal without any apparent noise is presented. The technique for encoding the secret text is through first scrambling the text using Chaotic Map, then encoding the scraped text using the Zaslavsky map, and finally hiding the text by breaking the speech signal into blocks and using only half of each block with the LSB, K-means algorithms. The measures (SNR, PSNR, Correlation, SSIM, and MSE) are used on various speech files (“.WAV”), and various secret texts. We observed that the suggested technique offers high security (SNR, PSNR, Correlation, and SSIM) of an encrypted text with low error (MSE). This indicates that the noise level in the speech signal is very low and the speech purity is high, so the suggested method is effective for embedding encrypted text into speech files
    • …
    corecore