3,717 research outputs found

    Astronomical image processing based on fractional calculus: the AstroFracTool

    Full text link
    The implementation of fractional differential calculations can give new possibilities for image processing tools, in particular for those that are devoted to astronomical images analysis. As discussed in arxiv:0910.2381, the fractional differentiation is able to enhance the quality of images, with interesting effects in edge detection and image restoration. Here, we propose the AstroFracTool, developed to provide a simple yet powerful enhancement tool-set for astronomical images. This tool works evaluating the fractional gradient of an image map. It can help produce an output image useful for further research and scientific purposes, such as the detection of faint objects and galaxy structures, or, in the case of planetary studies, the enhancement of surface details.Comment: Keywords: Fractional calculation, image processing, astronom

    Towards the Formalization of Fractional Calculus in Higher-Order Logic

    Full text link
    Fractional calculus is a generalization of classical theories of integration and differentiation to arbitrary order (i.e., real or complex numbers). In the last two decades, this new mathematical modeling approach has been widely used to analyze a wide class of physical systems in various fields of science and engineering. In this paper, we describe an ongoing project which aims at formalizing the basic theories of fractional calculus in the HOL Light theorem prover. Mainly, we present the motivation and application of such formalization efforts, a roadmap to achieve our goals, current status of the project and future milestones.Comment: 9 page

    A Robust Variable Step Size Fractional Least Mean Square (RVSS-FLMS) Algorithm

    Full text link
    In this paper, we propose an adaptive framework for the variable step size of the fractional least mean square (FLMS) algorithm. The proposed algorithm named the robust variable step size-FLMS (RVSS-FLMS), dynamically updates the step size of the FLMS to achieve high convergence rate with low steady state error. For the evaluation purpose, the problem of system identification is considered. The experiments clearly show that the proposed approach achieves better convergence rate compared to the FLMS and adaptive step-size modified FLMS (AMFLMS).Comment: 15 pages, 3 figures, 13th IEEE Colloquium on Signal Processing & its Applications (CSPA 2017

    Using fractional differentiation in astronomy

    Full text link
    In a recent paper, published at arXiv:0910.2381, we started a discussion on the new possibilities arising from the use of fractional differential calculus in image processing. We have seen that the fractional calculation is able to enhance the quality of images, with interesting possibilities in edge detection and image restoration. Here, we want to discuss more deeply its role as a tool for the processing of astronomical images. In particular, the fractional differentiation can help produce a 'content-matter' based image from a pretty astronomical image that can be used for more research and scientific purposes, for instance to reveal faint objects galactic matter, nebulosity, more stars and planetary surface detail

    Simultaneous denoising and enhancement of signals by a fractal conservation law

    Full text link
    In this paper, a new filtering method is presented for simultaneous noise reduction and enhancement of signals using a fractal scalar conservation law which is simply the forward heat equation modified by a fractional anti-diffusive term of lower order. This kind of equation has been first introduced by physicists to describe morphodynamics of sand dunes. To evaluate the performance of this new filter, we perform a number of numerical tests on various signals. Numerical simulations are based on finite difference schemes or Fast and Fourier Transform. We used two well-known measuring metrics in signal processing for the comparison. The results indicate that the proposed method outperforms the well-known Savitzky-Golay filter in signal denoising. Interesting multi-scale properties w.r.t. signal frequencies are exhibited allowing to control both denoising and contrast enhancement

    Liver CT enhancement using Fractional Differentiation and Integration

    Get PDF
    In this paper, a digital image filter is proposed to enhance the Liver CT image for improving the classification of tumors area in an infected Liver. The enhancement process is based on improving the main features within the image by utilizing the Fractional Differential and Integral in the wavelet sub-bands of an image. After enhancement, different features were extracted such as GLCM, GRLM, and LBP, among others. Then, the areas/cells are classified into tumor or non-tumor, using different models of classifiers to compare our proposed model with the original image and various established filters. Each image is divided into 15x15 non-overlapping blocks, to extract the desired features. The SVM, Random Forest, J48 and Simple Cart were trained on a supplied dataset, different from the test dataset. Finally, the block cells are identified whether they are classified as tumor or not. Our approach is validated on a group of patients’ CT liver tumor datasets. The experiment results demonstrated the efficiency of enhancement in the proposed technique

    Image Inpainting and Enhancement using Fractional Order Variational Model

    Get PDF
    The intention of image inpainting is to complete or fill the corrupted or missing zones of an image by considering the knowledge from the source region. A novel fractional order variational image inpainting model in reference to Caputo definition is introduced in this article. First, the fractional differential, and its numerical methods are represented according to Caputo definition. Then, a fractional differential mask is represented in 8-directions. The complex diffusivity function is also defined to preserve the edges. Finally, the missing regions are filled by using variational model with fractional differentials of 8-directions. The simulation results and analysis display that the new model not only inpaints the missing regions, but also heightens the contrast of the image. The inpainted images have better visual quality than other fractional differential filters
    • …
    corecore