1,346 research outputs found

    Bounded Influence Approaches to Constrained Mixed Vector Autoregressive Models

    Get PDF
    The proliferation of many clinical studies obtaining multiple biophysical signals from several individuals repeatedly in time is increasingly recognized, a recognition generating growth in statistical models that analyze cross-sectional time series data. In general, these statistical models try to answer two questions: (i) intra-individual dynamics of the response and its relation to some covariates; and, (ii) how this dynamics can be aggregated consistently in a group. In response to the first question, we propose a covariate-adjusted constrained Vector Autoregressive model, a technique similar to the STARMAX model (Stoffer, JASA 81, 762-772), to describe serial dependence of observations. In this way, the number of parameters to be estimated is kept minimal while offering flexibility for the model to explore higher order dependence. In response to (ii), we use mixed effects analysis that accommodates modelling of heterogeneity among cross-sections arising from covariate effects that vary from one cross-section to another. Although estimation of the model can proceed using standard maximum likelihood techniques, we believed it is advantageous to use bounded influence procedures in the modelling (such as choosing constraints) and parameter estimation so that the effects of outliers can be controlled. In particular, we use M-estimation with a redescending bounding function because its influence function is always bounded. Furthermore, assuming consistency, this influence function is useful to obtain the limiting distribution of the estimates. However, this distribution may not necessarily yield accurate inference in the presence of contamination as the actual asymptotic distribution might have wider tails. This led us to investigate bootstrap approximation techniques. A sampling scheme based on IID innovations is modified to accommodate the cross-sectional structure of the data. Then the M-estimation is applied to each bootstrap sample naively to obtain the asymptotic distribution of the estimates.We apply these strategies to the extracted BOLD activation from several regions of the brain from a group of individuals to describe joint dynamic behavior between these locations. We used simulated data with both innovation and additive outliers to test whether the estimation procedure is accurate despite contamination

    Recent advances in directional statistics

    Get PDF
    Mainstream statistical methodology is generally applicable to data observed in Euclidean space. There are, however, numerous contexts of considerable scientific interest in which the natural supports for the data under consideration are Riemannian manifolds like the unit circle, torus, sphere and their extensions. Typically, such data can be represented using one or more directions, and directional statistics is the branch of statistics that deals with their analysis. In this paper we provide a review of the many recent developments in the field since the publication of Mardia and Jupp (1999), still the most comprehensive text on directional statistics. Many of those developments have been stimulated by interesting applications in fields as diverse as astronomy, medicine, genetics, neurology, aeronautics, acoustics, image analysis, text mining, environmetrics, and machine learning. We begin by considering developments for the exploratory analysis of directional data before progressing to distributional models, general approaches to inference, hypothesis testing, regression, nonparametric curve estimation, methods for dimension reduction, classification and clustering, and the modelling of time series, spatial and spatio-temporal data. An overview of currently available software for analysing directional data is also provided, and potential future developments discussed.Comment: 61 page

    Image-to-Image Translation with Conditional Adversarial Networks

    Full text link
    We investigate conditional adversarial networks as a general-purpose solution to image-to-image translation problems. These networks not only learn the mapping from input image to output image, but also learn a loss function to train this mapping. This makes it possible to apply the same generic approach to problems that traditionally would require very different loss formulations. We demonstrate that this approach is effective at synthesizing photos from label maps, reconstructing objects from edge maps, and colorizing images, among other tasks. Indeed, since the release of the pix2pix software associated with this paper, a large number of internet users (many of them artists) have posted their own experiments with our system, further demonstrating its wide applicability and ease of adoption without the need for parameter tweaking. As a community, we no longer hand-engineer our mapping functions, and this work suggests we can achieve reasonable results without hand-engineering our loss functions either.Comment: Website: https://phillipi.github.io/pix2pix/, CVPR 201

    Data-Driven Uncertainty Quantification Interpretation with High Density Regions

    Get PDF
    In a time when data is being constantly generated by phones, vehicles, sensor net- works, social media, etc. detecting anomalies with in the data can be very crucial. In cases where we know little prior knowledge about the data, it becomes difficult to extract uncertainty about our results. In this thesis, we will propose a framework in which we can extract uncertainty distributions from data-driven modeling prob- lems. We will show some concrete examples of how to apply framework and provide some insight into what the uncertainty distributions are telling us using High Density Regions (HDRs)

    Statistical methods for topology inference, denoising, and bootstrapping in networks

    Full text link
    Quite often, the data we observe can be effectively represented using graphs. The underlying structure of the resulting graph, however, might contain noise and does not always hold constant across scales. With the right tools, we could possibly address these two problems. This thesis focuses on developing the right tools and provides insights in looking at them. Specifically, I study several problems that incorporate network data within the multi-scale framework, aiming at identifying common patterns and differences, of signals over networks across different scales. Additional topics in network denoising and network bootstrapping will also be discussed. The first problem we consider is the connectivity changes in dynamic networks constructed from multiple time series data. Multivariate time series data is often non-stationary. Furthermore, it is not uncommon to expect changes in a system across multiple time scales. Motivated by these observations, we in-corporate the traditional Granger-causal type of modeling within the multi-scale framework and propose a new method to detect the connectivity changes and recover the dynamic network structure. The second problem we consider is how to denoise and approximate signals over a network adjacency matrix. We propose an adaptive unbalanced Haar wavelet based transformation of the network data, and show that it is efficient in approximation and denoising of the graph signals over a network adjacency matrix. We focus on the exact decompositions of the network, the corresponding approximation theory, and denoising signals over graphs, particularly from the perspective of compression of the networks. We also provide a real data application on denoising EEG signals over a DTI network. The third problem we consider is in network denoising and network inference. Network representation is popular in characterizing complex systems. However, errors observed in the original measurements will propagate to network statistics and hence induce uncertainties to the summaries of the networks. We propose a spectral-denoising based resampling method to produce confidence intervals that propagate the inferential errors for a number of Lipschitz continuous net- work statistics. We illustrate the effectiveness of the method through a series of simulation studies
    corecore