2,712 research outputs found

    ChronoMID—Cross-modal neural networks for 3-D temporal medical imaging data

    Get PDF
    ChronoMID—neural networks for temporally-varying, hence Chrono, Medical Imaging Data—makes the novel application of cross-modal convolutional neural networks (X-CNNs) to the medical domain. In this paper, we present multiple approaches for incorporating temporal information into X-CNNs and compare their performance in a case study on the classification of abnormal bone remodelling in mice. Previous work developing medical models has predominantly focused on either spatial or temporal aspects, but rarely both. Our models seek to unify these complementary sources of information and derive insights in a bottom-up, data-driven approach. As with many medical datasets, the case study herein exhibits deep rather than wide data; we apply various techniques, including extensive regularisation, to account for this. After training on a balanced set of approximately 70000 images, two of the models—those using difference maps from known reference points—outperformed a state-of-the-art convolutional neural network baseline by over 30pp (> 99% vs. 68.26%) on an unseen, balanced validation set comprising around 20000 images. These models are expected to perform well with sparse data sets based on both previous findings with X-CNNs and the representations of time used, which permit arbitrarily large and irregular gaps between data points. Our results highlight the importance of identifying a suitable description of time for a problem domain, as unsuitable descriptors may not only fail to improve a model, they may in fact confound it

    ChronoMID-Cross-modal neural networks for 3-D temporal medical imaging data.

    Get PDF
    ChronoMID-neural networks for temporally-varying, hence Chrono, Medical Imaging Data-makes the novel application of cross-modal convolutional neural networks (X-CNNs) to the medical domain. In this paper, we present multiple approaches for incorporating temporal information into X-CNNs and compare their performance in a case study on the classification of abnormal bone remodelling in mice. Previous work developing medical models has predominantly focused on either spatial or temporal aspects, but rarely both. Our models seek to unify these complementary sources of information and derive insights in a bottom-up, data-driven approach. As with many medical datasets, the case study herein exhibits deep rather than wide data; we apply various techniques, including extensive regularisation, to account for this. After training on a balanced set of approximately 70000 images, two of the models-those using difference maps from known reference points-outperformed a state-of-the-art convolutional neural network baseline by over 30pp (> 99% vs. 68.26%) on an unseen, balanced validation set comprising around 20000 images. These models are expected to perform well with sparse data sets based on both previous findings with X-CNNs and the representations of time used, which permit arbitrarily large and irregular gaps between data points. Our results highlight the importance of identifying a suitable description of time for a problem domain, as unsuitable descriptors may not only fail to improve a model, they may in fact confound it

    Towards automated visual surveillance using gait for identity recognition and tracking across multiple non-intersecting cameras

    No full text
    Despite the fact that personal privacy has become a major concern, surveillance technology is now becoming ubiquitous in modern society. This is mainly due to the increasing number of crimes as well as the essential necessity to provide secure and safer environment. Recent research studies have confirmed now the possibility of recognizing people by the way they walk i.e. gait. The aim of this research study is to investigate the use of gait for people detection as well as identification across different cameras. We present a new approach for people tracking and identification between different non-intersecting un-calibrated stationary cameras based on gait analysis. A vision-based markerless extraction method is being deployed for the derivation of gait kinematics as well as anthropometric measurements in order to produce a gait signature. The novelty of our approach is motivated by the recent research in biometrics and forensic analysis using gait. The experimental results affirmed the robustness of our approach to successfully detect walking people as well as its potency to extract gait features for different camera viewpoints achieving an identity recognition rate of 73.6 % processed for 2270 video sequences. Furthermore, experimental results confirmed the potential of the proposed method for identity tracking in real surveillance systems to recognize walking individuals across different views with an average recognition rate of 92.5 % for cross-camera matching for two different non-overlapping views.<br/

    On Using Gait in Forensic Biometrics

    No full text
    Given the continuing advances in gait biometrics, it appears prudent to investigate the translation of these techniques for forensic use. We address the question as to the confidence that might be given between any two such measurements. We use the locations of ankle, knee and hip to derive a measure of the match between walking subjects in image sequences. The Instantaneous Posture Match algorithm, using Harr templates, kinematics and anthropomorphic knowledge is used to determine their location. This is demonstrated using real CCTV recorded at Gatwick Airport, laboratory images from the multi-view CASIA-B dataset and an example of real scene of crime video. To access the measurement confidence we study the mean intra- and inter-match scores as a function of database size. These measures converge to constant and separate values, indicating that the match measure derived from individual comparisons is considerably smaller than the average match measure from a population

    CLASSIFICATION OF FEATURE SELECTION BASED ON ARTIFICIAL NEURAL NETWORK

    Get PDF
    Pattern recognition (PR) is the central in a variety of engineering applications. For this reason, it is indeed vital to develop efficient pattern recognition systems that facilitate decision making automatically and reliably. In this study, the implementation of PR system based on computational intelligence approach namely artificial neural network (ANN) is performed subsequent to selection of the best feature vectors. A framework to determine the best eigenvectors which we named as ‘eigenpostures’ of four main human postures specifically, standing, squatting/sitting, bending and lying based on the rules of thumb of Principal Component Analysis (PCA) has been developed. Accordingly, all three rules of PCA namely the KG-rule, Cumulative Variance and the Scree test suggest retaining only 35 main principal component or ‘eigenpostures’. Next, these ‘eigenpostures’ are statistically analyzed via Analysis of Variance (ANOVA) prior to classification. Thus, the most relevant component of the selected eigenpostures can be determined. Both categories of ‘eigenpostures’ prior to ANOVA as well as after ANOVA served as inputs to the ANN classifier to verify the effectiveness of feature selection based on statistical analysis. Results attained confirmed that the statistical analysis has enabled us to perform effectively the selection of eigenpostures for classification of four types of human postures

    Advancements and Breakthroughs in Ultrasound Imaging

    Get PDF
    Ultrasonic imaging is a powerful diagnostic tool available to medical practitioners, engineers and researchers today. Due to the relative safety, and the non-invasive nature, ultrasonic imaging has become one of the most rapidly advancing technologies. These rapid advances are directly related to the parallel advancements in electronics, computing, and transducer technology together with sophisticated signal processing techniques. This book focuses on state of the art developments in ultrasonic imaging applications and underlying technologies presented by leading practitioners and researchers from many parts of the world

    Fast Change Detection

    Get PDF
    Automated detection of changes in a sequence of images captured under fixed background and steady light condition is an often required operation having widespread application. Possible application areas can be as diverse as from military to atmospheric science, from medicine to video surveillance, etc. There are many approaches to the problem of detecting changes; the more reliable one tries to make these more complex and computationally expensive these become, requiring sophisticated algorithms and specialised hardware. However, often one needs to use simple and computationally cheap procedures to be used with cots hardware when the problem scenario has static features with transient change in features associated to some small part of the image or field of view. A super-pixel-based change detection algorithm has been descried here that is basically a modification of the image differencing technique. The procedure has been seen to detect even a small transient change in intensity at a frame rate of as high as fifty frames per second using cots hardware.Defence Science Journal, 2011, 61(1), pp.51-56, DOI:http://dx.doi.org/10.14429/dsj.61.47
    • …
    corecore