582 research outputs found

    A Comparative Analysis of EEG-based Stress Detection Utilizing Machine Learning and Deep Learning Classifiers with a Critical Literature Review

    Get PDF
    Background: Mental stress is considered to be a major contributor to different psychological and physical diseases. Different socio-economic issues, competition in the workplace and amongst the students, and a high level of expectations are the major causes of stress. This in turn transforms into several diseases and may extend to dangerous stages if not treated properly and timely, causing the situations such as depression, heart attack, and suicide. This stress is considered to be a very serious health abnormality. Stress is to be recognized and managed before it ruins the health of a person. This has motivated the researchers to explore the techniques for stress detection. Advanced machine learning and deep learning techniques are to be investigated for stress detection.  Methodology: A survey of different techniques used for stress detection is done here. Different stages of detection including pre-processing, feature extraction, and classification are explored and critically reviewed. Electroencephalogram (EEG) is the main parameter considered in this study for stress detection. After reviewing the state-of-the-art methods for stress detection, a typical methodology is implemented, where feature extraction is done by using principal component analysis (PCA), ICA, and discrete cosine transform. After the feature extraction, some state-of-art machine learning classifiers are employed for classification including support vector machine (SVM), K-nearest neighbor (KNN), NB, and CT. In addition to these classifiers, a typical deep-learning classifier is also utilized for detection purposes. The dataset used for the study is the Database for Emotion Analysis using Physiological Signals (DEAP) dataset. Results: Different performance measures are considered including precision, recall, F1-score, and accuracy. PCA with KNN, CT, SVM and NB have given accuracies of 65.7534%, 58.9041%, 61.6438%, and 57.5342% respectively. With ICA as feature extractor accuracies obtained are 58.9041%, 61.64384%, 57.5342%, and 54.79452% for the classifiers KNN, CT, SVM, and NB respectively. DCT is also considered a feature extractor with classical machine learning algorithms giving the accuracies of 56.16438%, 50.6849%, 54.7945%, and 45.2055% for the classifiers KNN, CT, SVM, and NB respectively. A conventional DCNN classification is performed given an accuracy of 76% and precision, recall, and F1-score of 0.66, 0.77, and 0.64 respectively. Conclusion: For EEG-based stress detection, different state-of-the-art machine learning and deep learning methods are used along with different feature extractors such as PCA, ICA, and DCT. Results show that the deep learning classifier gives an overall accuracy of 76%, which is a significant improvement over classical machine learning techniques with the accuracies as PCA+ KNN (65.75%), DCT+KNN (56.16%), and ICA+CT (61.64%)

    Graph signal processing for machine learning: A review and new perspectives

    Get PDF
    The effective representation, processing, analysis, and visualization of large-scale structured data, especially those related to complex domains such as networks and graphs, are one of the key questions in modern machine learning. Graph signal processing (GSP), a vibrant branch of signal processing models and algorithms that aims at handling data supported on graphs, opens new paths of research to address this challenge. In this article, we review a few important contributions made by GSP concepts and tools, such as graph filters and transforms, to the development of novel machine learning algorithms. In particular, our discussion focuses on the following three aspects: exploiting data structure and relational priors, improving data and computational efficiency, and enhancing model interpretability. Furthermore, we provide new perspectives on future development of GSP techniques that may serve as a bridge between applied mathematics and signal processing on one side, and machine learning and network science on the other. Cross-fertilization across these different disciplines may help unlock the numerous challenges of complex data analysis in the modern age

    New contributions in overcomplete image representations inspired from the functional architecture of the primary visual cortex = Nuevas contribuciones en representaciones sobrecompletas de imágenes inspiradas por la arquitectura funcional de la corteza visual primaria

    Get PDF
    The present thesis aims at investigating parallelisms between the functional architecture of primary visual areas and image processing methods. A first objective is to refine existing models of biological vision on the base of information theory statements and a second is to develop original solutions for image processing inspired from natural vision. The available data on visual systems contains physiological and psychophysical studies, Gestalt psychology and statistics on natural images The thesis is mostly centered in overcomplete representations (i.e. representations increasing the dimensionality of the data) for multiple reasons. First because they allow to overcome existing drawbacks of critically sampled transforms, second because biological vision models appear overcomplete and third because building efficient overcomplete representations raises challenging and actual mathematical problems, in particular the problem of sparse approximation. The thesis proposes first a self-invertible log-Gabor wavelet transformation inspired from the receptive field and multiresolution arrangement of the simple cells in the primary visual cortex (V1). This transform shows promising abilities for noise elimination. Second, interactions observed between V1 cells consisting in lateral inhibition and in facilitation between aligned cells are shown efficient for extracting edges of natural images. As a third point, the redundancy introduced by the overcompleteness is reduced by a dedicated sparse approximation algorithm which builds a sparse representation of the images based on their edge content. For an additional decorrelation of the image information and for improving the image compression performances, edges arranged along continuous contours are coded in a predictive manner through chains of coefficients. This offers then an efficient representation of contours. Fourth, a study on contour completion using the tensor voting framework based on Gestalt psychology is presented. There, the use of iterations and of the curvature information allow to improve the robustness and the perceptual quality of the existing method. La presente tesis doctoral tiene como objetivo indagar en algunos paralelismos entre la arquitectura funcional de las áreas visuales primarias y el tratamiento de imágenes. Un primer objetivo consiste en mejorar los modelos existentes de visión biológica basándose en la teoría de la información. Un segundo es el desarrollo de nuevos algoritmos de tratamiento de imágenes inspirados de la visión natural. Los datos disponibles sobre el sistema visual abarcan estudios fisiológicos y psicofísicos, psicología Gestalt y estadísticas de las imágenes naturales. La tesis se centra principalmente en las representaciones sobrecompletas (i.e. representaciones que incrementan la dimensionalidad de los datos) por las siguientes razones. Primero porque permiten sobrepasar importantes desventajas de las transformaciones ortogonales; segundo porque los modelos de visión biológica necesitan a menudo ser sobrecompletos y tercero porque construir representaciones sobrecompletas eficientes involucra problemas matemáticos relevantes y novedosos, en particular el problema de las aproximaciones dispersas. La tesis propone primero una transformación en ondículas log-Gabor auto-inversible inspirada del campo receptivo y la organización en multiresolución de las células simples del cortex visual primario (V1). Esta transformación ofrece resultados prometedores para la eliminación del ruido. En segundo lugar, las interacciones observadas entre las células de V1 que consisten en la inhibición lateral y en la facilitación entre células alineadas se han mostrado eficientes para extraer los bordes de las imágenes naturales. En tercer lugar, la redundancia introducida por la transformación sobrecompleta se reduce gracias a un algoritmo dedicado de aproximación dispersa el cual construye una representación dispersa de las imágenes sobre la base de sus bordes. Para una decorrelación adicional y para conseguir más altas tasas de compresión, los bordes alineados a lo largo de contornos continuos están codificado de manera predictiva por cadenas de coeficientes, lo que ofrece una representacion eficiente de los contornos. Finalmente se presenta un estudio sobre el cierre de contornos utilizando la metodología de tensor voting. Proponemos el uso de iteraciones y de la información de curvatura para mejorar la robustez y la calidad perceptual de los métodos existentes
    corecore