41 research outputs found

    Resilient Digital Image Watermarking for Document Authentication

    Get PDF
    Abstract—We consider the applications of the Discrete Cosine Transform (DCT) and then a Chirp coding method for producing a highly robust system for watermarking images using a block partitioning approach subject to a self-alignment strategy and bit error correction. The applications for the algorithms presented and the system developed include the copyright protection of images and Digital Right Management for image libraries, for example. However, the principal focus of the research reported in this paper is on the use of printscan and e-display-scan image authentication for use in e-tickets where QR code, for example, are embedded in a full colour image of the ticket holder. This requires that an embedding procedure is developed that is highly robust to blur, noise, geometric distortions such as rotation, shift and barrel and the partial removal of image segments, all of which are considered in regard to the resilience of the method proposed and its practical realisation in a real operating environment

    Resilient Digital Image Watermarking Using a DCT- Component Perturbation Model

    Get PDF
    The applications of the Discrete Cosine Transform (DCT) for Computer Generated Imagery, image processingand, in particular, image compression are well known and the DCT also forms the central kernel for a number ofdigital image watermarking methods. In this paper we consider the application of the DCT for producing a highlyrobust method of watermarking images using a block partitioning approach subject to a self-alignment strategyand bit error correction. The applications for the algorithms presented include the copyright protection of imagesand Digital Right Management for image libraries, for example. However, the principal focus of the researchreported in this paper is on the use of print-scan and e-display-scan image authentication for use in e-ticketswhere QR code, for example, are embedded in an full colour image of the ticket holder. This requires that a DCTembedding procedure is developed that is highly robust to blur, noise, geometric distortions such as rotation, shift and barrel and the partial removal of image segments, all of which are consider ed in regard to the resilience of the method proposed and its practical realisation in a real operating environment

    A Survey of Signal Processing Problems and Tools in Holographic Three-Dimensional Television

    Get PDF
    Cataloged from PDF version of article.Diffraction and holography are fertile areas for application of signal theory and processing. Recent work on 3DTV displays has posed particularly challenging signal processing problems. Various procedures to compute Rayleigh-Sommerfeld, Fresnel and Fraunhofer diffraction exist in the literature. Diffraction between parallel planes and tilted planes can be efficiently computed. Discretization and quantization of diffraction fields yield interesting theoretical and practical results, and allow efficient schemes compared to commonly used Nyquist sampling. The literature on computer-generated holography provides a good resource for holographic 3DTV related issues. Fast algorithms to compute Fourier, Walsh-Hadamard, fractional Fourier, linear canonical, Fresnel, and wavelet transforms, as well as optimization-based techniques such as best orthogonal basis, matching pursuit, basis pursuit etc., are especially relevant signal processing techniques for wave propagation, diffraction, holography, and related problems. Atomic decompositions, multiresolution techniques, Gabor functions, and Wigner distributions are among the signal processing techniques which have or may be applied to problems in optics. Research aimed at solving such problems at the intersection of wave optics and signal processing promises not only to facilitate the development of 3DTV systems, but also to contribute to fundamental advances in optics and signal processing theory. © 2007 IEEE

    On the Chirp Function, the Chirplet Transform and the Optimal Communication of Information

    Get PDF
    —The purpose of this extended paper is to provide a review of the chirp function and the chirplet transform and to investigate the application of chirplet modulation for digital communications, in particular, the transmission of binary strings. The significance of the chirp function in the solution to a range of fundamental problems in physics is revisited to provide a background to the case and to present the context in which the chirp function plays a central role, the material presented being designed to show a variety of problems with solutions and applications that are characterized by a chirp function in a fundamental way. A study is then provided whose aim is to investigate the uniqueness of the chirp function in regard to its use for convolutionalcodinganddecoding,thelattercase(i.e.decoding) being related to the autocorrelation of the chirp function which provides a unique solution to the deconvolution problem. Complementary material in regard to the uniqueness of a chirp is addressed through an investigation into the selfcharacterizationofthechirpfunctionuponFouriertransformation. This includes a short study on the eigenfunctions of the Fourier transform, leading to a uniqueness conjecture which is based on an application of the Bluestein decomposition of a Fourier transform. The conjecture states that the chirp function is the only phase-only function to have a self-characteristic Fourier transform, and, for a specific scaling constant, a conjugate eigenfunction. In the context of this conjecture, we consider the transmission of information through a channel characterized by additive noise and the detection of signals with very low Signal-to-Noise Ratios. It is shown that application of chirplet modulation can provide a simple and optimal solution to the problem of transmitting binary strings through noisy communication channels, a result which suggests that all digital communication systems should ideally by predicated on the application of chirplet modulation. In the latter part of the paper, a method is proposed for securing the communication of information (in the form of a binary string) through chirplet modulation that is based on prime number factorization of the chirplet (angular) bandwidth. Coupled with a quantum computer for factorizing very large prime numbers using Shor’s algorithm, the method has the potential for designing a communications protocol specifically for users with access to quantum computing when the factorization of very large prime numbers is required. In thisrespect,and,inthefinalpartofthepaper,weinvestigatethe application of chirplet modulation for communicating through the ‘Water-Hole’. This includes the introduction of a method for distinguishing between genuine ‘intelligible’ binary strings through the Kullback-Leibler divergence which is shown to be statistically significant for a number of natural languages

    An overview of the holographic display related tasks within the European 3DTV project

    Get PDF
    A European consortium has been working since September 2004 on all video-based technical aspects of three-dimensional television. The group has structured its technical activities under five technical committees focusing on capturing 3D live scenes, converting the captured scenes to an abstract 3D representations, transmitting the 3D visual information, displaying the 3D video, and processing of signals for the conversion of the abstract 3D video to signals needed to drive the display. The display of 3D video signals by holographic means is highly desirable. Synthesis of high-resolution computer generated holograms with high spatial frequency content, using fast algorithms, is crucial. Fresnel approximation with its fast implementations, fast superposition of zonelens terms, look-up tables using pre-computed holoprimitives are reported in the literature. Phase-retrieval methods are also under investigation. Successful solutions to this problem will benefit from proper utilization and adaptation of signal processing tools like waveletes, fresnelets, chirplets. and atomic decompositions and various optimization algorithms like matching pursuit or simulated annealing

    Novel Compression Algorithm Based on Sparse Sampling of 3-D Laser Range Scans

    Get PDF
    Cataloged from PDF version of article.Three-dimensional models of environments can be very useful and are commonly employed in areas such as robotics, art and architecture, facility management, water management, environmental/industrial/urban planning and documentation. A 3-D model is typically composed of a large number of measurements. When 3-D models of environments need to be transmitted or stored, they should be compressed efficiently to use the capacity of the communication channel or the storage medium effectively. We propose a novel compression technique based on compressive sampling applied to sparse representations of 3-D laser range measurements. The main issue here is finding highly sparse representations of the range measurements, since they do not have such representations in common domains, such as the frequency domain. To solve this problem, we develop a new algorithm to generate sparse innovations between consecutive range measurements acquired while the sensor moves. We compare the sparsity of our innovations with others generated by estimation and filtering. Furthermore, we compare the compression performance of our lossy compression method with widely used lossless and lossy compression techniques. The proposed method offers a small compression ratio and provides a reasonable compromise between the reconstruction error and processing time

    Cutting-Edge Mathematical Tools in Processing and Analysis of Signals in Marine and Navy

    Get PDF
    Signal processing plays a pivotal role in information gathering and decision making. This paper presents and compares different signal processing techniques used in marine and navy applications, primarily based on using wavelets as kernel. The article covers Fourier transform, time frequency wavelet based techniques such as bandelets, contourlets, curvelets, edgelets, wedgelets, shapelets, and ridgelets. In the example section of the paper, several transform techniques are presented and commented on the harbour surveillance video stream example

    On the Analytic Wavelet Transform

    Full text link
    An exact and general expression for the analytic wavelet transform of a real-valued signal is constructed, resolving the time-dependent effects of non-negligible amplitude and frequency modulation. The analytic signal is first locally represented as a modulated oscillation, demodulated by its own instantaneous frequency, and then Taylor-expanded at each point in time. The terms in this expansion, called the instantaneous modulation functions, are time-varying functions which quantify, at increasingly higher orders, the local departures of the signal from a uniform sinusoidal oscillation. Closed-form expressions for these functions are found in terms of Bell polynomials and derivatives of the signal's instantaneous frequency and bandwidth. The analytic wavelet transform is shown to depend upon the interaction between the signal's instantaneous modulation functions and frequency-domain derivatives of the wavelet, inducing a hierarchy of departures of the transform away from a perfect representation of the signal. The form of these deviation terms suggests a set of conditions for matching the wavelet properties to suit the variability of the signal, in which case our expressions simplify considerably. One may then quantify the time-varying bias associated with signal estimation via wavelet ridge analysis, and choose wavelets to minimize this bias
    corecore