3,782 research outputs found

    Medical imaging analysis with artificial neural networks

    Get PDF
    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging

    Universal neural field computation

    Full text link
    Turing machines and G\"odel numbers are important pillars of the theory of computation. Thus, any computational architecture needs to show how it could relate to Turing machines and how stable implementations of Turing computation are possible. In this chapter, we implement universal Turing computation in a neural field environment. To this end, we employ the canonical symbologram representation of a Turing machine obtained from a G\"odel encoding of its symbolic repertoire and generalized shifts. The resulting nonlinear dynamical automaton (NDA) is a piecewise affine-linear map acting on the unit square that is partitioned into rectangular domains. Instead of looking at point dynamics in phase space, we then consider functional dynamics of probability distributions functions (p.d.f.s) over phase space. This is generally described by a Frobenius-Perron integral transformation that can be regarded as a neural field equation over the unit square as feature space of a dynamic field theory (DFT). Solving the Frobenius-Perron equation yields that uniform p.d.f.s with rectangular support are mapped onto uniform p.d.f.s with rectangular support, again. We call the resulting representation \emph{dynamic field automaton}.Comment: 21 pages; 6 figures. arXiv admin note: text overlap with arXiv:1204.546

    Tensor networks for quantum machine learning

    Get PDF
    Once developed for quantum theory, tensor networks have been established as a successful machine learning paradigm. Now, they have been ported back to the quantum realm in the emerging field of quantum machine learning to assess problems that classical computers are unable to solve efficiently. Their nature at the interface between physics and machine learning makes tensor networks easily deployable on quantum computers. In this review article, we shed light on one of the major architectures considered to be predestined for variational quantum machine learning. In particular, we discuss how layouts like MPS, PEPS, TTNs and MERA can be mapped to a quantum computer, how they can be used for machine learning and data encoding and which implementation techniques improve their performance

    Continuous-variable quantum neural networks

    Full text link
    We introduce a general method for building neural networks on quantum computers. The quantum neural network is a variational quantum circuit built in the continuous-variable (CV) architecture, which encodes quantum information in continuous degrees of freedom such as the amplitudes of the electromagnetic field. This circuit contains a layered structure of continuously parameterized gates which is universal for CV quantum computation. Affine transformations and nonlinear activation functions, two key elements in neural networks, are enacted in the quantum network using Gaussian and non-Gaussian gates, respectively. The non-Gaussian gates provide both the nonlinearity and the universality of the model. Due to the structure of the CV model, the CV quantum neural network can encode highly nonlinear transformations while remaining completely unitary. We show how a classical network can be embedded into the quantum formalism and propose quantum versions of various specialized model such as convolutional, recurrent, and residual networks. Finally, we present numerous modeling experiments built with the Strawberry Fields software library. These experiments, including a classifier for fraud detection, a network which generates Tetris images, and a hybrid classical-quantum autoencoder, demonstrate the capability and adaptability of CV quantum neural networks

    Case study on quantum convolutional neural network scalability

    Full text link
    One of the crucial tasks in computer science is the processing time reduction of various data types, i.e., images, which is important for different fields -- from medicine and logistics to virtual shopping. Compared to classical computers, quantum computers are capable of parallel data processing, which reduces the data processing time. This quality of quantum computers inspired intensive research of the potential of quantum technologies applicability to real-life tasks. Some progress has already revealed on a smaller volumes of the input data. In this research effort, I aimed to increase the amount of input data (I used images from 2 x 2 to 8 x 8), while reducing the processing time, by way of skipping intermediate measurement steps. The hypothesis was that, for increased input data, the omitting of intermediate measurement steps after each quantum convolution layer will improve output metric results and accelerate data processing. To test the hypothesis, I performed experiments to chose the best activation function and its derivative in each network. The hypothesis was partly confirmed in terms of output mean squared error (MSE) -- it dropped from 0.25 in the result of classical convolutional neural network (CNN) training to 0.23 in the result of quantum convolutional neural network (QCNN) training. In terms of the training time, however, which was 1.5 minutes for CNN and 4 hours 37 minutes in the least lengthy training iteration, the hypothesis was rejected.Comment: 11 pages (without references), 13 figure

    Can biological quantum networks solve NP-hard problems?

    Full text link
    There is a widespread view that the human brain is so complex that it cannot be efficiently simulated by universal Turing machines. During the last decades the question has therefore been raised whether we need to consider quantum effects to explain the imagined cognitive power of a conscious mind. This paper presents a personal view of several fields of philosophy and computational neurobiology in an attempt to suggest a realistic picture of how the brain might work as a basis for perception, consciousness and cognition. The purpose is to be able to identify and evaluate instances where quantum effects might play a significant role in cognitive processes. Not surprisingly, the conclusion is that quantum-enhanced cognition and intelligence are very unlikely to be found in biological brains. Quantum effects may certainly influence the functionality of various components and signalling pathways at the molecular level in the brain network, like ion ports, synapses, sensors, and enzymes. This might evidently influence the functionality of some nodes and perhaps even the overall intelligence of the brain network, but hardly give it any dramatically enhanced functionality. So, the conclusion is that biological quantum networks can only approximately solve small instances of NP-hard problems. On the other hand, artificial intelligence and machine learning implemented in complex dynamical systems based on genuine quantum networks can certainly be expected to show enhanced performance and quantum advantage compared with classical networks. Nevertheless, even quantum networks can only be expected to efficiently solve NP-hard problems approximately. In the end it is a question of precision - Nature is approximate.Comment: 38 page
    corecore