39,335 research outputs found

    Focusing on out-of-focus : assessing defocus estimation algorithms for the benefit of automated image masking

    Get PDF
    Acquiring photographs as input for an image-based modelling pipeline is less trivial than often assumed. Photographs should be correctly exposed, cover the subject sufficiently from all possible angles, have the required spatial resolution, be devoid of any motion blur, exhibit accurate focus and feature an adequate depth of field. The last four characteristics all determine the " sharpness " of an image and the photogrammetric, computer vision and hybrid photogrammetric computer vision communities all assume that the object to be modelled is depicted " acceptably " sharp throughout the whole image collection. Although none of these three fields has ever properly quantified " acceptably sharp " , it is more or less standard practice to mask those image portions that appear to be unsharp due to the limited depth of field around the plane of focus (whether this means blurry object parts or completely out-of-focus backgrounds). This paper will assess how well-or ill-suited defocus estimating algorithms are for automatically masking a series of photographs, since this could speed up modelling pipelines with many hundreds or thousands of photographs. To that end, the paper uses five different real-world datasets and compares the output of three state-of-the-art edge-based defocus estimators. Afterwards, critical comments and plans for the future finalise this paper

    The AU Microscopii Debris Disk: Multiwavelength Imaging and Modeling

    Full text link
    (abridged) Debris disks around main sequence stars are produced by the erosion and evaporation of unseen parent bodies. AU Microscopii (GJ 803) is a compelling object to study in the context of disk evolution across different spectral types, as it is an M dwarf whose near edge-on disk may be directly compared to that of its A5V sibling beta Pic. We resolve the disk from 8-60 AU in the near-IR JHK' bands at high resolution with the Keck II telescope and adaptive optics, and develop a novel data reduction technique for the removal of the stellar point spread function. The point source detection sensitivity in the disk midplane is more than a magnitude less sensitive than regions away from the disk for some radii. We measure a blue color across the near-IR bands, and confirm the presence of substructure in the inner disk. Some of the structural features exhibit wavelength-dependent positions. The disk architecture and characteristics of grain composition are inferred through modeling. We approach the modeling of the dust distribution in a manner that complements previous work. Using a Monte Carlo radiative transfer code, we compare a relatively simple model of the distribution of porous grains to a broad data set, simultaneously fitting to midplane surface brightness profiles and the spectral energy distribution. Our model confirms that the large-scale architecture of the disk is consistent with detailed models of steady-state grain dynamics. Here, a belt of parent bodies from 35-40 AU is responsible for producing dust that is then swept outward by the stellar wind and radiation pressures. We infer the presence of very small grains in the outer region, down to sizes of ~0.05 micron. These sizes are consistent with stellar mass-loss rates Mdot_* << 10^2 Mdot_sun.Comment: ApJ accepted, 56 pages, preprint style. Version in emulateapj with high-resolution figures available at http://tinyurl.com/y6ent

    Evaluating methods for controlling depth perception in stereoscopic cinematography.

    Get PDF
    Existing stereoscopic imaging algorithms can create static stereoscopic images with perceived depth control function to ensure a compelling 3D viewing experience without visual discomfort. However, current algorithms do not normally support standard Cinematic Storytelling techniques. These techniques, such as object movement, camera motion, and zooming, can result in dynamic scene depth change within and between a series of frames (shots) in stereoscopic cinematography. In this study, we empirically evaluate the following three types of stereoscopic imaging approaches that aim to address this problem. (1) Real-Eye Configuration: set camera separation equal to the nominal human eye interpupillary distance. The perceived depth on the display is identical to the scene depth without any distortion. (2) Mapping Algorithm: map the scene depth to a predefined range on the display to avoid excessive perceived depth. A new method that dynamically adjusts the depth mapping from scene space to display space is presented in addition to an existing fixed depth mapping method. (3) Depth of Field Simulation: apply Depth of Field (DOF) blur effect to stereoscopic images. Only objects that are inside the DOF are viewed in full sharpness. Objects that are far away from the focus plane are blurred. We performed a human-based trial using the ITU-R BT.500-11 Recommendation to compare the depth quality of stereoscopic video sequences generated by the above-mentioned imaging methods. Our results indicate that viewers' practical 3D viewing volumes are different for individual stereoscopic displays and viewers can cope with much larger perceived depth range in viewing stereoscopic cinematography in comparison to static stereoscopic images. Our new dynamic depth mapping method does have an advantage over the fixed depth mapping method in controlling stereo depth perception. The DOF blur effect does not provide the expected improvement for perceived depth quality control in 3D cinematography. We anticipate the results will be of particular interest to 3D filmmaking and real time computer games

    The Right (Angled) Perspective: Improving the Understanding of Road Scenes Using Boosted Inverse Perspective Mapping

    Full text link
    Many tasks performed by autonomous vehicles such as road marking detection, object tracking, and path planning are simpler in bird's-eye view. Hence, Inverse Perspective Mapping (IPM) is often applied to remove the perspective effect from a vehicle's front-facing camera and to remap its images into a 2D domain, resulting in a top-down view. Unfortunately, however, this leads to unnatural blurring and stretching of objects at further distance, due to the resolution of the camera, limiting applicability. In this paper, we present an adversarial learning approach for generating a significantly improved IPM from a single camera image in real time. The generated bird's-eye-view images contain sharper features (e.g. road markings) and a more homogeneous illumination, while (dynamic) objects are automatically removed from the scene, thus revealing the underlying road layout in an improved fashion. We demonstrate our framework using real-world data from the Oxford RobotCar Dataset and show that scene understanding tasks directly benefit from our boosted IPM approach.Comment: equal contribution of first two authors, 8 full pages, 6 figures, accepted at IV 201

    Size growth of red-sequence early-type galaxies in clusters in the last 10 Gyr

    Get PDF
    We carried out a photometric and structural analysis in the rest-frame VV band of a mass-selected (logM/M>10.7\log M/M_\odot >10.7) sample of red-sequence galaxies in 14 galaxy clusters, 6 of which are at z>1.45z>1.45. To this end, we reduced/analyzed about 300 orbits of multicolor images taken with the Advanced Camera for Survey and the Wide Field Camera 3 on the Hubble Space Telescope. We uniformly morphologically classified galaxies from z=0.023z=0.023 to z=1.803z=1.803, and we homogeneously derived sizes (effective radii) for the entire sample. Furthermore, our size derivation allows, and therefore is not biased by, the presence of the usual variety of morphological structures seen in early-type galaxies, such as bulges, bars, disks, isophote twists, and ellipiticy gradients. By using such a mass-selected sample, composed of 244 red-sequence early-type galaxies, we find that the log\log of the galaxy size at a fixed stellar mass, logM/M=11\log M/M_\odot= 11 has increased with time at a rate of 0.023±0.0020.023\pm0.002 dex per Gyr over the last 10 Gyr, in marked contrast with the threefold increase found in the literature for galaxies in the general field over the same period. This suggests, at face value, that secular processes should be excluded as the primary drivers of size evolution because we observed an environmental environmental dependent size growth. Using spectroscopic ages of Coma early-type galaxies we also find that recently quenched early-type galaxies are a numerically minor population not different enough in size to alter the mean size at a given mass, which implies that the progenitor bias is minor, i.e., that the size evolution measured by selecting galaxies at the redshift of observation is indistinguishable from the one that compares ancestors and descendents.Comment: A&A 593, A2 (2016) after revision of the z=1.63 cluster name, mis-typed in previous version. No result of our paper is affected by having mis-typed the cluster nam
    corecore