160 research outputs found

    Proceedings of the second "international Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST'14)

    Get PDF
    The implicit objective of the biennial "international - Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST) is to foster collaboration between international scientific teams by disseminating ideas through both specific oral/poster presentations and free discussions. For its second edition, the iTWIST workshop took place in the medieval and picturesque town of Namur in Belgium, from Wednesday August 27th till Friday August 29th, 2014. The workshop was conveniently located in "The Arsenal" building within walking distance of both hotels and town center. iTWIST'14 has gathered about 70 international participants and has featured 9 invited talks, 10 oral presentations, and 14 posters on the following themes, all related to the theory, application and generalization of the "sparsity paradigm": Sparsity-driven data sensing and processing; Union of low dimensional subspaces; Beyond linear and convex inverse problem; Matrix/manifold/graph sensing/processing; Blind inverse problems and dictionary learning; Sparsity and computational neuroscience; Information theory, geometry and randomness; Complexity/accuracy tradeoffs in numerical methods; Sparsity? What's next?; Sparse machine learning and inference.Comment: 69 pages, 24 extended abstracts, iTWIST'14 website: http://sites.google.com/site/itwist1

    Hyperspectral Super-Resolution with Coupled Tucker Approximation: Recoverability and SVD-based algorithms

    Full text link
    We propose a novel approach for hyperspectral super-resolution, that is based on low-rank tensor approximation for a coupled low-rank multilinear (Tucker) model. We show that the correct recovery holds for a wide range of multilinear ranks. For coupled tensor approximation, we propose two SVD-based algorithms that are simple and fast, but with a performance comparable to the state-of-the-art methods. The approach is applicable to the case of unknown spatial degradation and to the pansharpening problem.Comment: IEEE Transactions on Signal Processing, Institute of Electrical and Electronics Engineers, in Pres
    • …
    corecore