122,757 research outputs found

    Novel image descriptors and learning methods for image classification applications

    Get PDF
    Image classification is an active and rapidly expanding research area in computer vision and machine learning due to its broad applications. With the advent of big data, the need for robust image descriptors and learning methods to process a large number of images for different kinds of visual applications has greatly increased. Towards that end, this dissertation focuses on exploring new image descriptors and learning methods by incorporating important visual aspects and enhancing the feature representation in the discriminative space for advancing image classification. First, an innovative sparse representation model using the complete marginal Fisher analysis (CMFA-SR) framework is proposed for improving the image classification performance. In particular, the complete marginal Fisher analysis method extracts the discriminatory features in both the column space of the local samples based within class scatter matrix and the null space of its transformed matrix. To further improve the classification capability, a discriminative sparse representation model is proposed by integrating a representation criterion such as the sparse representation and a discriminative criterion. Second, the discriminative dictionary distribution based sparse coding (DDSC) method is presented that utilizes both the discriminative and generative information to enhance the feature representation. Specifically, the dictionary distribution criterion reveals the class conditional probability of each dictionary item by using the dictionary distribution coefficients, and the discriminative criterion applies new within-class and between-class scatter matrices for discriminant analysis. Third, a fused color Fisher vector (FCFV) feature is developed by integrating the most expressive features of the DAISY Fisher vector (D-FV) feature, the WLD-SIFT Fisher vector (WS-FV) feature, and the SIFT-FV feature in different color spaces to capture the local, color, spatial, relative intensity, as well as the gradient orientation information. Furthermore, a sparse kernel manifold learner (SKML) method is applied to the FCFV features for learning a discriminative sparse representation by considering the local manifold structure and the label information based on the marginal Fisher criterion. Finally, a novel multiple anthropological Fisher kernel framework (M-AFK) is presented to extract and enhance the facial genetic features for kinship verification. The proposed method is derived by applying a novel similarity enhancement approach based on SIFT flow and learning an inheritable transformation on the multiple Fisher vector features that uses the criterion of minimizing the distance among the kinship samples and maximizing the distance among the non-kinship samples. The effectiveness of the proposed methods is assessed on numerous image classification tasks, such as face recognition, kinship verification, scene classification, object classification, and computational fine art painting categorization. The experimental results on popular image datasets show the feasibility of the proposed methods

    Indexing of mid-resolution satellite images with structural attributes.

    Get PDF
    Satellite image classification has been a major research field for many years with its varied applications in the field of Geography, Geology, Archaeology, Environmental Sciences and Military purposes. Many different techniques have been proposed to classify satellite images with color, shape and texture features. Complex indices like Vegetation index (NDVI), Brightness index (BI) or Urban index (ISU) are used for multi-spectral or hyper-spectral satellite images. In this paper we will show the efficiency of structural features describing man-made objects in mid-resolution satellite images to describe image content. We will then show the state-of-the-art to classify large satellite images with structural features computed from road networks and urban regions extracted on small image patches cut in the large image. Fisher Linear Discriminant (FLD) analysis is used for feature selection and a one-vsrest probabilistic Gaussian kernel Support Vector Machines (SVM) classification method is used to classify the images. The classification probabilities associated with each subimage of the large image provide an estimate of the geographical class coverage

    Compositional Model based Fisher Vector Coding for Image Classification

    Full text link
    Deriving from the gradient vector of a generative model of local features, Fisher vector coding (FVC) has been identified as an effective coding method for image classification. Most, if not all, FVC implementations employ the Gaussian mixture model (GMM) to depict the generation process of local features. However, the representative power of the GMM could be limited because it essentially assumes that local features can be characterized by a fixed number of feature prototypes and the number of prototypes is usually small in FVC. To handle this limitation, in this paper we break the convention which assumes that a local feature is drawn from one of few Gaussian distributions. Instead, we adopt a compositional mechanism which assumes that a local feature is drawn from a Gaussian distribution whose mean vector is composed as the linear combination of multiple key components and the combination weight is a latent random variable. In this way, we can greatly enhance the representative power of the generative model of FVC. To implement our idea, we designed two particular generative models with such a compositional mechanism.Comment: Fixed typos. 16 pages. Appearing in IEEE T. Pattern Analysis and Machine Intelligence (TPAMI

    Indexing of mid-resolution satellite images with structural attributes

    Get PDF
    Satellite image classification has been a major research field for many years with its varied applications in the field of Geography, Geology, Archaeology, Environmental Sciences and Military purposes. Many different techniques have been proposed to classify satellite images with color, shape and texture features. Complex indices like Vegetation index (NDVI), Brightness index (BI) or Urban index (ISU) are used for multi-spectral or hyper-spectral satellite images. In this paper we will show the efficiency of structural features describing man-made objects in mid-resolution satellite images to describe image content. We will then show the state-of-the-art to classify large satellite images with structural features computed from road networks and urban regions extracted on small image patches cut in the large image. Fisher Linear Discriminant (FLD) analysis is used for feature selection and a one-vsrest probabilistic Gaussian kernel Support Vector Machines (SVM) classification method is used to classify the images. The classification probabilities associated with each subimage of the large image provide an estimate of the geographical class coverage

    Using pixel-based and object-based methods to classify urban hyperspectral features

    Get PDF
    Object-based image analysis methods have been developed recently. They have since become a very active research topic in the remote sensing community. This is mainly because the researchers have begun to study the spatial structures within the data. In contrast, pixel-based methods only use the spectral content of data. To evaluate the applicability of object-based image analysis methods for land-cover information extraction from hyperspectral data, a comprehensive comparative analysis was performed. In this study, six supervised classification methods were selected from pixel-based category, including the maximum likelihood (ML), fisher linear likelihood (FLL), support vector machine (SVM), binary encoding (BE), spectral angle mapper (SAM) and spectral information divergence (SID). The classifiers were conducted on several features extracted from original spectral bands in order to avoid the problem of the Hughes phenomenon, and obtain a sufficient number of training samples. Three supervised and four unsupervised feature extraction methods were used. Pixel based classification was conducted in the first step of the proposed algorithm. The effective feature number (EFN) was then obtained. Image objects were thereafter created using the fractal net evolution approach (FNEA), the segmentation method implemented in eCognition software. Several experiments have been carried out to find the best segmentation parameters. The classification accuracy of these objects was compared with the accuracy of the pixel-based methods. In these experiments, the Pavia University Campus hyperspectral dataset was used. This dataset was collected by the ROSIS sensor over an urban area in Italy. The results reveal that when using any combination of feature extraction and classification methods, the performance of object-based methods was better than pixel-based ones. Furthermore the statistical analysis of results shows that on average, there is almost an 8 percent improvement in classification accuracy when we use the object-based methods

    Geometric Distribution Weight Information Modeled Using Radial Basis Function with Fractional Order for Linear Discriminant Analysis Method

    Get PDF
    Fisher linear discriminant analysis (FLDA) is a classic linear feature extraction and dimensionality reduction approach for face recognition. It is known that geometric distribution weight information of image data plays an important role in machine learning approaches. However, FLDA does not employ the geometric distribution weight information of facial images in the training stage. Hence, its recognition accuracy will be affected. In order to enhance the classification power of FLDA method, this paper utilizes radial basis function (RBF) with fractional order to model the geometric distribution weight information of the training samples and proposes a novel geometric distribution weight information based Fisher discriminant criterion. Subsequently, a geometric distribution weight information based LDA (GLDA) algorithm is developed and successfully applied to face recognition. Two publicly available face databases, namely, ORL and FERET databases, are selected for evaluation. Compared with some LDA-based algorithms, experimental results exhibit that our GLDA approach gives superior performance

    Investigation of new feature descriptors for image search and classification

    Get PDF
    Content-based image search, classification and retrieval is an active and important research area due to its broad applications as well as the complexity of the problem. Understanding the semantics and contents of images for recognition remains one of the most difficult and prevailing problems in the machine intelligence and computer vision community. With large variations in size, pose, illumination and occlusions, image classification is a very challenging task. A good classification framework should address the key issues of discriminatory feature extraction as well as efficient and accurate classification. Towards that end, this dissertation focuses on exploring new image descriptors by incorporating cues from the human visual system, and integrating local, texture, shape as well as color information to construct robust and effective feature representations for advancing content-based image search and classification. Based on the Gabor wavelet transformation, whose kernels are similar to the 2D receptive field profiles of the mammalian cortical simple cells, a series of new image descriptors is developed. Specifically, first, a new color Gabor-HOG (GHOG) descriptor is introduced by concatenating the Histograms of Oriented Gradients (HOG) of the component images produced by applying Gabor filters in multiple scales and orientations to encode shape information. Second, the GHOG descriptor is analyzed in six different color spaces and grayscale to propose different color GHOG descriptors, which are further combined to present a new Fused Color GHOG (FC-GHOG) descriptor. Third, a novel GaborPHOG (GPHOG) descriptor is proposed which improves upon the Pyramid Histograms of Oriented Gradients (PHOG) descriptor, and subsequently a new FC-GPHOG descriptor is constructed by combining the multiple color GPHOG descriptors and employing the Principal Component Analysis (PCA). Next, the Gabor-LBP (GLBP) is derived by accumulating the Local Binary Patterns (LBP) histograms of the local Gabor filtered images to encode texture and local information of an image. Furthermore, a novel Gabor-LBPPHOG (GLP) image descriptor is proposed which integrates the GLBP and the GPHOG descriptors as a feature set and an innovative Fused Color Gabor-LBP-PHOG (FC-GLP) is constructed by fusing the GLP from multiple color spaces. Subsequently, The GLBP and the GHOG descriptors are then combined to produce the Gabor-LBP-HOG (GLH) feature vector which performs well on different object and scene image categories. The six color GLH vectors are further concatenated to form the Fused Color GLH (FC-GLH) descriptor. Finally, the Wigner based Local Binary Patterns (WLBP) descriptor is proposed that combines multi-neighborhood LBP, Pseudo-Wigner distribution of images and the popular bag of words model to effectively classify scene images. To assess the feasibility of the proposed new image descriptors, two classification methods are used: one method applies the PCA and the Enhanced Fisher Model (EFM) for feature extraction and the nearest neighbor rule for classification, while the other method employs the Support Vector Machine (SVM). The classification performance of the proposed descriptors is tested on several publicly available popular image datasets. The experimental results show that the proposed new image descriptors achieve image search and classification results better than or at par with other popular image descriptors, such as the Scale Invariant Feature Transform (SIFT), the Pyramid Histograms of visual Words (PHOW), the Pyramid Histograms of Oriented Gradients (PHOG), the Spatial Envelope (SE), the Color SIFT four Concentric Circles (C4CC), the Object Bank (OB), the Context Aware Topic Model (CA-TM), the Hierarchical Matching Pursuit (HMP), the Kernel Spatial Pyramid Matching (KSPM), the SIFT Sparse-coded Spatial Pyramid Matching (Sc-SPM), the Kernel Codebook (KC) and the LBP

    Novel color and local image descriptors for content-based image search

    Get PDF
    Content-based image classification, search and retrieval is a rapidly-expanding research area. With the advent of inexpensive digital cameras, cheap data storage, fast computing speeds and ever-increasing data transfer rates, millions of images are stored and shared over the Internet every day. This necessitates the development of systems that can classify these images into various categories without human intervention and on being presented a query image, can identify its contents in order to retrieve similar images. Towards that end, this dissertation focuses on investigating novel image descriptors based on texture, shape, color, and local information for advancing content-based image search. Specifically, first, a new color multi-mask Local Binary Patterns (mLBP) descriptor is presented to improve upon the traditional Local Binary Patterns (LBP) texture descriptor for better image classification performance. Second, the mLBP descriptors from different color spaces are fused to form the Color LBP Fusion (CLF) and Color Grayscale LBP Fusion (CGLF) descriptors that further improve image classification performance. Third, a new HaarHOG descriptor, which integrates the Haar wavelet transform and the Histograms of Oriented Gradients (HOG), is presented for extracting both shape and local information for image classification. Next, a novel three Dimensional Local Binary Patterns (3D-LBP) descriptor is proposed for color images by encoding both color and texture information for image search. Furthermore, the novel 3DLH and 3DLH-fusion descriptors are proposed, which combine the HaarHOG and the 3D-LBP descriptors by means of Principal Component Analysis (PCA) and are able to improve upon the individual HaarHOG and 3D-LBP descriptors for image search. Subsequently, the innovative H-descriptor, and the H-fusion descriptor are presented that improve upon the 3DLH descriptor. Finally, the innovative Bag of Words-LBP (BoWL) descriptor is introduced that combines the idea of LBP with a bag-of-words representation to further improve image classification performance. To assess the feasibility of the proposed new image descriptors, two classification frameworks are used. In one, the PCA and the Enhanced Fisher Model (EFM) are applied for feature extraction and the nearest neighbor classification rule for classification. In the other, a Support Vector Machine (SVM) is used for classification. The classification performance is tested on several widely used and publicly available image datasets. The experimental results show that the proposed new image descriptors achieve an image classification performance better than or comparable to other popular image descriptors, such as the Scale Invariant Feature Transform (SIFT), the Pyramid Histograms of visual Words (PHOW), the Pyramid Histograms of Oriented Gradients (PHOG), the Spatial Envelope (SE), the Color SIFT four Concentric Circles (C4CC), the Object Bank (OB), the Hierarchical Matching Pursuit (HMP), the Kernel Spatial Pyramid Matching (KSPM), the SIFT Sparse-coded Spatial Pyramid Matching (ScSPM), the Kernel Codebook (KC) and the LBP

    COMPUTER-AIDED MODEL FOR BREAST CANCER DETECTION IN MAMMOGRAMS

    Get PDF
    The objective of this research was to introduce a new system for automated detection of breast masses in mammography images. The system will be able to discriminate if the image has a mass or not, as well as benign and malignant masses. The new automated ROI segmentation model, where a profiling model integrated with a new iterative growing region scheme has been proposed. The ROI region segmentation is integrated with both statistical and texture feature extraction and selection to discriminate suspected regions effectively. A classifier model is designed using linear fisher classifier for suspected region identification. To check the system's performance, a large mammogram database has been used for experimental analysis. Sensitivity, specificity, and accuracy have been used as performance measures. In this study, the methods yielded an accuracy of 93% for normal/abnormal classification and a 79% accuracy for bening/malignant classification. The proposed model had an improvement of 8% for normal/abnormal classification, and a 7% improvement for benign/malignant classification over Naga et al., 2001. Moreover, the model improved 8% for normal/abnormal classification over Subashimi et al., 2015. The early diagnosis of this disease has a major role in its treatment. Thus the use of computer systems as a detection tool could be viewed as essential to helping with this disease

    Face Recognition and Gender Classification using Principal Component Analysis

    Get PDF
    Face recognition is one of the most challenging areas in the field of computer vision. In this thesis, a photometric (view based) approach is used for face recognition and gender classification. There exist several algorithms to extract features such as Principal Component Analysis (PCA), Fisher Linear Discriminate Analysis (FLDA), Image principal component analysis (IPCA), and various others. Principal component analysis is used for the dimensional reduction and for the feature extraction. Two face databases are taken in which one database contains the face images of male and one contains face images of females. On the basis of Euclidean Distance classification of the gender is done. Comparison between Euclidean Distance and Mahalanobis Distance for face recognition is also done with different number of test images. This method is tested on FERET and IIT KanpurŒs database
    corecore