16,453 research outputs found

    Discriminating small wooded elements in rural landscape from aerial photography: a hybrid pixel/object-based analysis approach

    Get PDF
    While small, fragmented wooded elements do not represent a large surface area in agricultural landscape, their role in the sustainability of ecological processes is recognized widely. Unfortunately, landscape ecology studies suffer from the lack of methods for automatic detection of these elements. We propose a hybrid approach using both aerial photographs and ancillary data of coarser resolution to automatically discriminate small wooded elements. First, a spectral and textural analysis is performed to identify all the planted-tree areas in the digital photograph. Secondly, an object-orientated spatial analysis using the two data sources and including a multi-resolution segmentation is applied to distinguish between large and small woods, copses, hedgerows and scattered trees. The results show the usefulness of the hybrid approach and the prospects for future ecological applications

    Rapid metaphase and interphase detection of radiation-induced chromosome aberrations in human lymphocytes by chromosomal suppression in situ hybridization

    Get PDF
    Chromosomal in situ suppression (CISS)-hybridization of biotinylated phage DNA-library inserts from sorted human chromosomes was used to decorate chromosomes 1 and 7 specifically from pter to qter and to detect structural aberrations of these chromosomes in irradiated human peripheral lymphocytes. In addition, probe pUC1.77 was used to mark the Iq12 subregion in normal and aberrant chromosomes 1. Low LET radiation (60Co--rays; 1.17 and 1.33 MeV) of lymphocyte cultures was performed with various doses (D = 0, 2, 4, 8 Gy) 5 h after stimulation with phytohaemagglutinin. Irradiated cells were cultivated for an additional 67 h before Colcemid arrested metaphase spreads were obtained. Aberrations of the specifically stained chromosomes, such as deletions, dicentrics, and rings, were readily scored after in situ hybridization with either the 1q12 specific probe or DNA-library inserts. By the latter approach, translocations of the specifically stained chromosomes could also be reliably assessed. A linear increase of the percentage of specifically stained aberrant chromosomes was observed when plotted as a function of the square of the dose D. A particular advantage of this new approach is provided by the possibility to delineate numerical and structural chromosome aberrations directly in interphase nuclei. These results indicate that cytogenetic monitoring of ionizing radiation may be considerably facilitated by CISS-hybridization

    Analysis and evaluation of fragment size distributions in rock blasting at the Erdenet Mine

    Get PDF
    Master's Project (M.S.) University of Alaska Fairbanks, 2015Rock blasting is one of the most important operations in mining. It significantly affects the subsequent comminution processes and, therefore, is critical to successful mining productions. In this study, for the evaluation of the blasting performance at the Erdenet Mine, we analyzed rock fragment size distributions with the digital image processing method. The uniformities of rock fragments and the mean fragment sizes were determined and applied in the Kuz-Ram model. Statistical prediction models were also developed based on the field measured parameters. The results were compared with the Kuz-Ram model predictions and the digital image processing measurements. A total of twenty-eight images from eleven blasting patterns were processed, and rock size distributions were determined by Split-Desktop program in this study. Based on the rock mass and explosive properties and the blasting parameters, the rock fragment size distributions were also determined with the Kuz-Ram model and compared with the measurements by digital image processing. Furthermore, in order to improve the prediction of rock fragment size distributions at the mine, regression analyses were conducted and statistical models w ere developed for the estimation of the uniformity and characteristic size. The results indicated that there were discrepancies between the digital image measurements and those estimated by the Kuz-Ram model. The uniformity indices of image processing measurements varied from 0.76 to 1.90, while those estimate by the Kuz-Ram model were from 1.07 to 1.13. The mean fragment size of the Kuz-Ram model prediction was 97.59% greater than the mean fragment size of the image processing. The multivariate nonlinear regression analyses conducted in this study indicated that rock uniaxial compressive strength and elastic modulus, explosive energy input in the blasting, bench height to burden ratio and blast area per hole were significant predictor variables in determining the fragment characteristic size and the uniformity index. The regression models developed based on the above predictor variables showed much closer agreement with the measurements

    A chondroblastic osteosarcoma of the coronoid process mimicking a fragmented coronoid process in a dog

    Get PDF
    A 6-year-old Rhodesian Ridgeback was presented with a 1.5 year history of right forelimb lameness. Clinical, radiological and computed tomographic findings suggested the presence of fragmented medial coronoid process. A subtotal coronoidectomy was performed and, due to the atypical appearance of the medial coronoid process on imaging and at surgery, histopathology of the fragments was performed which revealed chondroblastic OS. Ten months after surgery, the dog was re-presented with the same clinical signs and the radiographic changes were suggestive of a recurrence of the OS. Palliative therapy was instigated at the owner's request. Thirty months after surgery of the neoplasm, the dog was presented with dyspnea. Thoracic radiographs showed lesions consistent with lung metastases. Euthanasia was requested by the owner, who declined post-mortem examination

    Rapid mapping of chromosomal breakpoints: from blood to BAC in 20 days

    Get PDF
    Structural chromosome aberrations and associated segmental or chromosomal aneusomies are major causes of reproductive failure in humans. Despite the fact that carriers of reciprocal balanced translocation often have no other clinical symptoms or disease, impaired chromosome homologue pairing in meiosis and karyokinesis errors lead to over-representation of translocations carriers in the infertile population and in recurrent pregnancy loss patients. At present, clinicians have no means to select healthy germ cells or balanced zygotes in vivo, but in vitro fertilization (IVF) followed by preimplantation genetic diagnosis (PGD) offers translocation carriers a chance to select balanced or normal embryos for transfer. Although a combination of telomeric and centromeric probes can differentiate embryos that are unbalanced from normal or unbalanced ones, a seemingly random position of breakpoints in these IVF-patients poses a serious obstacle to differentiating between normal and balanced embryos, which for most translocation couples, is desirable. Using a carrier with reciprocal translocation t(4;13) as an example, we describe our state-of-the-art approach to the preparation of patient-specific DNA probes that span or 'extent' the breakpoints. With the techniques and resources described here, most breakpoints can be accurately mapped in a matter of days using carrier lymphocytes, and a few extra days are allowed for PGD-probe optimization. The optimized probes will then be suitable for interphase cell analysis, a prerequisite for PGD since blastomeres are biopsied from normally growing day 3 – embryos regardless of their position in the mitotic cell cycle. Furthermore, routine application of these rapid methods should make PGD even more affordable for translocation carriers enrolled in IVF programs
    corecore