28,692 research outputs found

    Helicopter flights with night-vision goggles: Human factors aspects

    Get PDF
    Night-vision goggles (NVGs) and, in particular, the advanced, helmet-mounted Aviators Night-Vision-Imaging System (ANVIS) allows helicopter pilots to perform low-level flight at night. It consists of light intensifier tubes which amplify low-intensity ambient illumination (star and moon light) and an optical system which together produce a bright image of the scene. However, these NVGs do not turn night into day, and, while they may often provide significant advantages over unaided night flight, they may also result in visual fatigue, high workload, and safety hazards. These problems reflect both system limitations and human-factors issues. A brief description of the technical characteristics of NVGs and of human night-vision capabilities is followed by a description and analysis of specific perceptual problems which occur with the use of NVGs in flight. Some of the issues addressed include: limitations imposed by a restricted field of view; problems related to binocular rivalry; the consequences of inappropriate focusing of the eye; the effects of ambient illumination levels and of various types of terrain on image quality; difficulties in distance and slope estimation; effects of dazzling; and visual fatigue and superimposed symbology. These issues are described and analyzed in terms of their possible consequences on helicopter pilot performance. The additional influence of individual differences among pilots is emphasized. Thermal imaging systems (forward looking infrared (FLIR)) are described briefly and compared to light intensifier systems (NVGs). Many of the phenomena which are described are not readily understood. More research is required to better understand the human-factors problems created by the use of NVGs and other night-vision aids, to enhance system design, and to improve training methods and simulation techniques

    Helmet-mounted pilot night vision systems: Human factors issues

    Get PDF
    Helmet-mounted displays of infrared imagery (forward-looking infrared (FLIR)) allow helicopter pilots to perform low level missions at night and in low visibility. However, pilots experience high visual and cognitive workload during these missions, and their performance capabilities may be reduced. Human factors problems inherent in existing systems stem from three primary sources: the nature of thermal imagery; the characteristics of specific FLIR systems; and the difficulty of using FLIR system for flying and/or visually acquiring and tracking objects in the environment. The pilot night vision system (PNVS) in the Apache AH-64 provides a monochrome, 30 by 40 deg helmet-mounted display of infrared imagery. Thermal imagery is inferior to television imagery in both resolution and contrast ratio. Gray shades represent temperatures differences rather than brightness variability, and images undergo significant changes over time. The limited field of view, displacement of the sensor from the pilot's eye position, and monocular presentation of a bright FLIR image (while the other eye remains dark-adapted) are all potential sources of disorientation, limitations in depth and distance estimation, sensations of apparent motion, and difficulties in target and obstacle detection. Insufficient information about human perceptual and performance limitations restrains the ability of human factors specialists to provide significantly improved specifications, training programs, or alternative designs. Additional research is required to determine the most critical problem areas and to propose solutions that consider the human as well as the development of technology

    Benchmarking 6DOF Outdoor Visual Localization in Changing Conditions

    Get PDF
    Visual localization enables autonomous vehicles to navigate in their surroundings and augmented reality applications to link virtual to real worlds. Practical visual localization approaches need to be robust to a wide variety of viewing condition, including day-night changes, as well as weather and seasonal variations, while providing highly accurate 6 degree-of-freedom (6DOF) camera pose estimates. In this paper, we introduce the first benchmark datasets specifically designed for analyzing the impact of such factors on visual localization. Using carefully created ground truth poses for query images taken under a wide variety of conditions, we evaluate the impact of various factors on 6DOF camera pose estimation accuracy through extensive experiments with state-of-the-art localization approaches. Based on our results, we draw conclusions about the difficulty of different conditions, showing that long-term localization is far from solved, and propose promising avenues for future work, including sequence-based localization approaches and the need for better local features. Our benchmark is available at visuallocalization.net.Comment: Accepted to CVPR 2018 as a spotligh

    The CFHTLS Real Time Analysis System "Optically Selected GRB Afterglows"

    Full text link
    We describe a wide and deep search for optical GRB afterglows on images taken with MegaCAM at the Canada France Hawaii Telescope, within the framework of the CFHT Legacy Survey. This search is performed in near real-time thanks to a Real Time Analysis System called "Optically Selected GRB Afterglows", which has been completely realized and installed on a dedicated computer in Hawaii. This pipeline automatically and quickly analyzes Megacam images and extracts from them a list of astrometrically and photometrically variable objects which are displayed on a web page for validation by a member of the collaboration. In this paper, we comprehensively describe the RTAS process. We also present statistical results based on nearly one full year of operation, showing the quality of the images and the performance of the RTAS. Finally, we compare the efficiency of this study with similar searches, propose an ideal observational strategy using simulations, and discuss general considerations on the searches for GRB afterglows independently of the prompt emission. This is the first of a series of two papers. A second paper will discuss the characterization of variable objects we have found, as well as the GRB afterglow candidates and their nature. We will also estimate or at least constrain the collimation factor of GRB using the totality of the Very Wide Survey observations.Comment: 11 pages, 10 Figures, 5 Table

    Space-enhanced terrestrial solar power for equatorial regions

    Get PDF
    This Paper investigates the concept of solar mirrors in an Earth orbit to provide large-scale terrestrial equatorial solar farms with additional solar power during the hours of darkness. A flower constellation of mirrors is considered in highly eccentric orbits (semimajor axis=20,270.4  km) in order to increase the time of visibility over the solar farms, and through this architecture, only two mirrors are needed to provide complete night coverage over three equatorial locations. Selecting the proper value for the orbit eccentricity, solar radiation pressure and Earth’s oblateness perturbations act on the mirrors so that the apsidal motion of the orbit due to these perturbations is synchronized with the apparent motion of the sun. Therefore, it can be guaranteed that the perigee always points toward the sun and that the mirrors orbit mostly above the night side of the Earth. With respect to geostationary orbit, the family of orbits considered in this Paper allows a passive means to overcome issues related to orbital perturbations. Moreover, because of the large slant range from geostationary orbits, a larger mirror is required to deliver the same energy that could be delivered from a lower orbit with a smaller mirror. As a result, a single antiheliotropic flower constellation composed of two mirrors of 50  km2 would be able to deliver energy in the range of 4.60–5.20 GW·h per day to 1000  km3 solar farms on the equator. Finally, it is estimated that, deploying 90 of these constellations, the price of electricity could be reduced from 9.1 cents to 6 cents per kW⋅h
    • …
    corecore