41,882 research outputs found

    Integration Mechanisms for Heading Perception

    Get PDF
    Previous studies of heading perception suggest that human observers employ spatiotemporal pooling to accommodate noise in optic flow stimuli. Here, we investigated how spatial and temporal integration mechanisms are used for judgments of heading through a psychophysical experiment involving three different types of noise. Furthermore, we developed two ideal observer models to study the components of the spatial information used by observers when performing the heading task. In the psychophysical experiment, we applied three types of direction noise to optic flow stimuli to differentiate the involvement of spatial and temporal integration mechanisms. The results indicate that temporal integration mechanisms play a role in heading perception, though their contribution is weaker than that of the spatial integration mechanisms. To elucidate how observers process spatial information to extract heading from a noisy optic flow field, we compared psychophysical performance in response to random-walk direction noise with that of two ideal observer models (IOMs). One model relied on 2D screen-projected flow information (2D-IOM), while the other used environmental, i.e., 3D, flow information (3D-IOM). The results suggest that human observers compensate for the loss of information during the 2D retinal projection of the visual scene for modest amounts of noise. This suggests the likelihood of a 3D reconstruction during heading perception, which breaks down under extreme levels of noise

    Solar stereoscopy - where are we and what developments do we require to progress?

    Get PDF
    Observations from the two STEREO-spacecraft give us for the first time the possibility to use stereoscopic methods to reconstruct the 3D solar corona. Classical stereoscopy works best for solid objects with clear edges. Consequently an application of classical stereoscopic methods to the faint structures visible in the optically thin coronal plasma is by no means straight forward and several problems have to be treated adequately: 1.)First there is the problem of identifying one dimensional structures -e.g. active region coronal loops or polar plumes- from the two individual EUV-images observed with STEREO/EUVI. 2.) As a next step one has the association problem to find corresponding structures in both images. 3.) Within the reconstruction problem stereoscopic methods are used to compute the 3D-geometry of the identified structures. Without any prior assumptions, e.g., regarding the footpoints of coronal loops, the reconstruction problem has not one unique solution. 4.) One has to estimate the reconstruction error or accuracy of the reconstructed 3D-structure, which depends on the accuracy of the identified structures in 2D, the separation angle between the spacecraft, but also on the location, e.g., for east-west directed coronal loops the reconstruction error is highest close to the loop top. 5.) Eventually we are not only interested in the 3D-geometry of loops or plumes, but also in physical parameters like density, temperature, plasma flow, magnetic field strength etc. Helpful for treating some of these problems are coronal magnetic field models extrapolated from photospheric measurements, because observed EUV-loops outline the magnetic field. This feature has been used for a new method dubbed 'magnetic stereoscopy'. As examples we show recent application to active region loops.Comment: 12 Pages, 9 Figures, a Review articl

    2D materials and van der Waals heterostructures

    Full text link
    The physics of two-dimensional (2D) materials and heterostructures based on such crystals has been developing extremely fast. With new 2D materials, truly 2D physics has started to appear (e.g. absence of long-range order, 2D excitons, commensurate-incommensurate transition, etc). Novel heterostructure devices are also starting to appear - tunneling transistors, resonant tunneling diodes, light emitting diodes, etc. Composed from individual 2D crystals, such devices utilize the properties of those crystals to create functionalities that are not accessible to us in other heterostructures. We review the properties of novel 2D crystals and how their properties are used in new heterostructure devices
    • …
    corecore