826 research outputs found

    Personalized musculoskeletal modeling:Bone morphing, knee joint modeling, and applications

    Get PDF

    Comparative validation of two patient-specific modelling pipelines for predicting knee joint forces during level walking

    Get PDF
    Over the past few years, the use of computer models and simulations tailored to the patient's physiology to assist clinical decision-making has increased enormously. While several pipelines to develop personalized models exist, their adoption on a large scale is still limited due to the required niche computational skillset and the lengthy operations required. Novel toolboxes, such as STAPLE, promise to streamline and expedite the development of image-based skeletal lower limb models. STAPLE-generated models can be rapidly generated, with minimal user input, and present similar joint kinematics and kinetics compared to models developed employing the established INSIGNEO pipeline. Yet, it is unclear how much the observed discrepancies scale up and affect joint contact force predictions. In this study, we compared image-based musculoskeletal models developed (i) with the INSIGNEO pipeline and (ii) with a semi-automated pipeline that combines STAPLE and nmsBuilder, and assessed their accuracy against experimental implant data. Our results showed that both pipelines predicted similar total knee joint contact forces between one another in terms of profiles and average values, characterized by a moderately high level of agreement with the experimental data. Nonetheless, the Student t-test revealed statistically significant differences between both pipelines. Of note, the STAPLE-based pipeline required considerably less time than the INSIGNEO pipeline to generate a musculoskeletal model (i.e., 60 vs 160 min). This is likely to open up opportunities for the use of personalized musculoskeletal models in clinical practice, where time is of the essence

    Musculoskeletal Models in a Clinical Perspective

    Get PDF
    This book includes a selection of papers showing the potential of the dynamic modelling approach to treat problems related to the musculoskeletal system. The state-of-the-art is presented in a review article and in a perspective paper, and several examples of application in different clinical problems are provided

    Otimização muscle-in-the-loop em tempo real para reabilitação física com um exosqueleto ativo: uma mudança de paradigma

    Get PDF
    Assisting human locomotion with a wearable robotic orthosis is still quite challenging, largely due to the complexity of the neuromusculoskeletal system, the time-varying dynamics that accompany motor adaptation, and the uniqueness of every individual’s response to the assistance given by the robot. To this day, these devices have not met their well-known promise yet, mostly due to the fact that they are not perfectly suitable for the rehabilitation of neuropathologic patients. One of the main challenges hampering this goal still relies on the interface and co-dependency between the human and the machine. Nowadays, most commercial exoskeletons replay pre-defined gait patterns, whereas research exoskeletons are switching to controllers based on optimized torque profiles. In most cases, the dynamics of the human musculoskeletal system are still ignored and do not take into account the optimal conditions for inducing a positive modulation of neuromuscular activity. This is because both rehabilitation strategies are still emphasized on the macro level of the whole joint instead of focusing on the muscles’ dynamics and activity, which are the actual anatomical elements that may need to be rehabilitated. Strategies to keep the human in the loop of the exoskeleton’s control laws in real-time may help to overcome these challenges. The main purpose of the present dissertation is to make a paradigm shift in the approach on how the assistance that is given to a subject by an exoskeleton is modelled and controlled during physical rehabilitation. Therefore, in the scope of the present work, it was intended to design, concede, implement, and validate a real-time muscle-in-the-loop optimization model to find the best assistive support ratio that would induce optimal rehabilitation conditions to a specific group of impaired muscles while having a minimum impact on the other healthy muscles. The developed optimization model was implemented in the form of a plugin and was integrated on a neuromechanical model-based interface for driving a bilateral ankle exoskeleton. Experimental pilot tests evaluated the feasibility and effectiveness of the model. Results of the most significant pilots achieved EMG reductions up to 61 ± 3 % in Soleus and 41 ± 10 % in Gastrocnemius Lateralis. Moreover, results also demonstrated the efficiency of the optimization’s specific reduction on rehabilitation by looking into the muscular fatigue after each experiment. Finally, two parallel preliminary studies emerged from the pilots, which looked at muscle adaptation, after a new assistive condition had been applied, over time and at the effect of the lateral positioning of the exoskeleton’s actuators on the leg muscles.Auxiliar a locomoção humana com uma ortose robótica ainda é bastante desafiante, em grande parte devido à complexidade do sistema neuromusculoesquelético, à dinâmica variável no tempo que acompanha a adaptação motora e à singularidade da resposta de cada indivíduo à assistência dada pelo robô. Até hoje, está por cumprir a promessa inicial destes dispositivos, principalmente devido ao facto de não serem perfeitamente adequados para a reabilitação de pacientes neuropatológicos. Um dos principais desafios que dificultam esse objetivo foca-se ainda na interface e na co-dependência entre o ser humano e a máquina. Hoje em dia, a maioria dos exoesqueletos comerciais reproduz padrões de marcha predefinidos, enquanto que os exoesqueletos em investigação estão só agora a mudar para controladores com base em perfis de binário otimizados. Na maioria dos casos, a dinâmica do sistema musculoesquelético humano ainda é ignorada e não tem em consideração as condições ideais para induzir uma modulação positiva da atividade neuromuscular. Isso ocorre porque ambas as estratégias de reabilitação ainda são enfatizadas no nível macro de toda a articulação, em vez de se concentrar na dinâmica e atividade dos músculos, que são os elementos anatómicos que realmente precisam de ser reabilitados. Estratégias para manter o ser humano em loop nos comandos que controlam o exoesqueleto em tempo real podem ajudar a superar estes desafios. O principal objetivo desta dissertação é fazer uma mudança de paradigma na abordagem em como a assistência que é dada a um sujeito por um exosqueleto é modelada e controlada durante a reabilitação física. Portanto, no contexto do presente trabalho, pretendeu-se projetar, conceder, implementar e validar um modelo de otimização muscle-in-the-loop em tempo real para encontrar a melhor relação de suporte capaz de induzir as condições ideais de reabilitação para um grupo específico de músculos fragilizados, tendo um impacto mínimo nos outros músculos saudáveis. O modelo de otimização desenvolvido foi implementado na forma de um plugin e foi integrado numa interface baseada num modelo neuromecânico para o controlo de um exoesqueleto bilateral de tornozelo. Testes experimentais piloto avaliaram a viabilidade e a eficácia do modelo. Os resultados dos testes mais significativos demonstraram reduções de EMG de até 61 ± 3 % no Soleus e 41 ± 10 % no Gastrocnemius Lateral. Adicionalmente, os resultados demonstraram também a eficiência em reabilitação da redução específica no EMG devido à otimização tendo em conta a fadiga muscular após cada teste. Finalmente, dois estudos preliminares paralelos emergiram dos testes piloto, que analisaram a adaptação muscular após uma nova condição assistiva ter sido definida ao longo do tempo e o efeito do posicionamento lateral dos atuadores do exoesqueleto nos músculos da perna.Mestrado em Engenharia Biomédic

    Book of Abstracts 15th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering and 3rd Conference on Imaging and Visualization

    Get PDF
    In this edition, the two events will run together as a single conference, highlighting the strong connection with the Taylor & Francis journals: Computer Methods in Biomechanics and Biomedical Engineering (John Middleton and Christopher Jacobs, Eds.) and Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization (JoãoManuel R.S. Tavares, Ed.). The conference has become a major international meeting on computational biomechanics, imaging andvisualization. In this edition, the main program includes 212 presentations. In addition, sixteen renowned researchers will give plenary keynotes, addressing current challenges in computational biomechanics and biomedical imaging. In Lisbon, for the first time, a session dedicated to award the winner of the Best Paper in CMBBE Journal will take place. We believe that CMBBE2018 will have a strong impact on the development of computational biomechanics and biomedical imaging and visualization, identifying emerging areas of research and promoting the collaboration and networking between participants. This impact is evidenced through the well-known research groups, commercial companies and scientific organizations, who continue to support and sponsor the CMBBE meeting series. In fact, the conference is enriched with five workshops on specific scientific topics and commercial software.info:eu-repo/semantics/draf

    Investigation of the dependence of joint contact forces on musculotendon parameters using a codified workflow for image-based modelling

    Get PDF
    The generation of subject-specific musculoskeletal models of the lower limb has become a feasible taskthanks to improvements in medical imaging technology and musculoskeletal modelling software.Nevertheless, clinical use of these models in paediatric applications is still limited for what concernsthe estimation of muscle and joint contact forces. Aiming to improve the current state of the art, amethodology to generate highly personalized subject-specific musculoskeletal models of the lower limbbased on magnetic resonance imaging (MRI) scans was codified as a step-by-step procedure and appliedto data from eight juvenile individuals. The generated musculoskeletal models were used to simulate 107gait trials using stereophotogrammetric and force platform data as input. To ensure completeness of themodelling procedure, muscles’ architecture needs to be estimated. Four methods to estimate muscles’maximum isometric force and two methods to estimate musculotendon parameters (optimal fiber lengthand tendon slack length) were assessed and compared, in order to quantify their influence on the models’output. Reported results represent the first comprehensive subject-specific model-based characterizationof juvenile gait biomechanics, including profiles of joint kinematics and kinetics, muscle forces and jointcontact forces. Our findings suggest that, when musculotendon parameters were linearly scaled from areference model and the muscle force-length-velocity relationship was accounted for in the simulations,realistic knee contact forces could be estimated and these forces were not sensitive the method used tocompute muscle maximum isometric force

    Development of an exoskeleton model in a neurorehabilittion perspective

    Get PDF
    Tese de mestrado integrado, Engenharia Biomédica e Biofísica (Engenharia Clínica e Instrumentação Médica) Universidade de Lisboa, Faculdade de Ciências, 2017A locomoção é uma tarefa de grande importância na vida das pessoas. Ainda que pareça uma tarefa simples, andar é um exercício complexo que envolve controlo nervoso a fim de ativar os músculos e criar um movimento coordenado. Embora exista variabilidade natural nos padrões de marcha de indivíduos saudáveis, é possível definir um padrão “normal”. O mínimo distúrbio a nível neuromuscular que afete a marcha de um individuo resulta na perturbação da qualidade de vida do mesmo, podendo mesmo condicionar a sua independência. Paralisia Cerebral, Esclerose Lateral Amiotrófica e Parkinson são algumas das doenças que podem afetar o padrão normal da marcha. Outra condição que pode desencadear alterações é o Acidente Vascular Cerebral (AVC), de acordo com a com a Organização Mundial de Saúde, cerca de 15 milhões de pessoas em cada ano sofrem um AVC, das quais 50% sofrem alterações da marcha não permanentes. Cada uma das condições mencionadas provoca alterações diferentes à marcha normal permitindo a definição de padrões de marcha de acordo com a condição que os afeta. Por norma, o tratamento mais utilizado para distúrbios da marcha é reabilitação motora que consiste na realização repetida de exercícios que permitem a estimulação dos músculos de forma a que voltem a estar ativos. Ao longo do tempo as técnicas de reabilitação motora foram evoluindo e recentemente a engenharia uniu-se à medicina para originar uma nova área: a Reabilitação Robótica. Esta área faz uso de tecnologias robóticas com o objetivo de proporcionar um tratamento mais personalizado e adequado a cada paciente, beneficiando assim quer o paciente, quer os terapeutas. Embora ainda esteja em crescimento, esta área tem já demonstrado um grande potencial. O Exoesqueleto é um dispositivo robótico que começou por ser usado em fins militares de forma a aumentar a capacidade que cada soldado carrega, é agora bastante utilizado na Reabilitação Robótica. Este dispositivo estimula o paciente a andar e vai apoiando conforme necessário, respondendo ao paradigma ajudar tanto quanto necessário, ou seja, o dispositivo ajuda o paciente a caminhar, dando-lhe apenas o impulso necessário para que este consiga prosseguir, tendo como objetivo final deixar de ser necessário enviar este impulso. Este procedimento é determinado pela estrutura de controlo do exosqueleto que consiste na estratégia que rege e define o comportamento do dispositivo robótico de acordo com a informação que os sensores do mesmo lhe fornecem. Por exemplo, existem controlos de posição, em que o exosqueleto conhece uma trajetória de padrão normal e ajusta a posição do paciente mediante a diferença que deteta entre a posição dita atual e a posição de referência. A estratégia de controlo desempenha também um papel muito importante no âmbito da Reabilitação Robótica, é claro que os pacientes beneficiam de terapias o mais personalizadas possível, no entanto, o desenvolvimento de uma estratégia de controlo é um processo moroso e que envolve recursos. Uma possível solução para esta limitação é a simulação, que consiste na imitação de um processo ou sistema do mundo real em função do tempo, sendo usado para processos de otimização, testes, treinos e engenharia de segurança. Tendo isto em conta, simulação seria uma forma rápida e económica de estudar novas estratégias de controlo ou até otimizar já existentes. O objetivo deste trabalho consistiu em desenvolver um modelo capaz de realizar simulações de um exosqueleto, mais especificamente do exosqueleto H1, desenvolvido ao abrigo do projeto HYPER. Este modelo foi desenvolvido em OpenSim, um simulador de uso livre desenvolvido pelo National Center for Simulation in Rehabilitation Research (NCSRR), Stanford University, USA. Este simulador é usado maioritariamente para projetos na área da biomecânica com especial enfoque para o estudo do comportamento de sistemas músculo-esqueléticos. Primeiramente, foi efetuado um estudo intensivo sobre padrões de marcha, de forma a perceber quais as condições que podem afetar a marcha de um individuo. Este estudo apresenta a definição de alguns padrões de marcha como: (1) Padrão Normal, (2) Padrão Hemiplégico, causado por AVC, (3) Padrão Diplégico, causado por Paralisia Cerebral, (4)Padrão Neuropático, causado por Esclerose Lateral Amiotrófica, (5) Padrão Miotrófico, causado por Distrofia Muscular, (6)Padrão Parkinsoniano, causado pela doença de Parkinson. Além disto, foi realizada uma pesquisa bibliográfica de forma a conhecer o estado da arte das estratégias de controlo usadas na área de Reabilitation Robótica. Conhecer as características de um padrão de marcha, bem como dos controladores existentes é importante na medida em pode ser interessante desenvolver estratégias de controlo de acordo com o padrão de marcha ou pelo menos conhecer que padrões se devem ajustar para uma terapia mais eficaz de acordo com a condição que afeta o paciente. A construção deste modelo iniciou-se no SolidWorks, um software de desenho assistido por computador, onde o sistema foi modelado de acordo com as propriedades físicas do H1, seguindo-se modelação por código em XML. Após a construção, o modelo foi validado. Para efetuar esta validação foram efetuadas provas estáticas e em movimento com o exosqueleto, tendo sido recolhidos os seguintes dados: ângulos e momento de cada articulação. Os momentos recolhidos nestas provas foram depois comparados com os momentos calculados com a ferramenta Inverse Dynamics do OpenSim, que usou como dados de entrada os ângulos de cada articulação. O modelo construído, denominado Exoskeleton, foi depois integrado num novo modelo em conjunto com um modelo já disponível na base de dados OpenSim, o 3DGait2392. A junção destes modelos deu origem ao ExoBody, um modelo que permite estudar a interação entre o dispositivo robótico e o paciente. Apesar de este modelo não ter passado por um processo de validação análogo ao do Exoskeleton, foi usado para um pequeno estudo de marcha onde se comparou a marcha de um individuo saudável com um paciente de AVC com e sem o uso do exosqueleto. Para a realização deste estudo foram utilizados data sets disponíveis online na base de dados OpenSim, estando já preparados para ser usados como dados de entrada das ferramentas Inverse Kinemaitcs e Inverse Dynamics. A Inverse Kynematics é uma ferramente que calcula para cada instante de tempo a posição do modelo que melhor corresponde à posição experimental, sendo esta determinada por marcadores por norma colocados na pele do individuo em estudo. A Inverse Dynamics, por sua vez, determina as forças generalizadas responsáveis por um determinado movimento em cada articulação. Ambos os modelos construídos são capazes de realizar simulações no OpenSim sem gerar erros de sistema e dentro de tempos computacionais considerados normais. Tal como esperado, a comparação entre os dados experimentais e os dados simulados referentes ao modelo Exoskeleton foram concordantes e por isso o modelo foi validado com sucesso. Considerando o ExoBody model, os resultados apresentados evidenciam diferenças entre os padrões de marcha e também é possível verificar diferenças aquando do uso do exosqueleto ou sem o mesmo. Posto isto, é possível concluir que os objetivos deste trabalho foram alcançados com sucesso uma vez que se desenvolveu o modelo que permite a simulação do exosqueleto bem como a sua personalização, adição de componentes como atuadores ou controladores. É importante referir que o modelo Exoskeleton tem algumas limitações, nomeadamente referentes ao design do mesmo que poderá ser melhorado. Partindo deste trabalho, novos desafios podem ser enfrentados na perspetiva de continuar a melhorar e abrir horizontes na Reabilitação Robótica, nomeadamente, seria importante fazer uma validação do ExoBody incluindo um estudo de forças de reação.Locomotion plays a very important role in a person’s life. Although healthy individuals show natural variability in gait patterns, it is possible to define an acceptable pattern for “normal gait”. However, some pathologies as Amyotrophic Lateral Sclerosis (ALS), Spinal Cord Injury (SCI), Stroke or others can induce abnormal gait patterns that can limit the life of a person, making him/her dependent of others and consequently reducing his/hers quality of life. Robotics rehabilitation therapies are a growing solution that intends to revert or diminish the impairments in gait. The use of robotic devices, such as exoskeletons, cover some limitations of the traditional therapeutic methods, which is a great benefit for both patients and therapists. Furthermore, the application of an adequate treatment in these patients can be improved with the understanding of how the pathology affects the individual and through the development of specific solutions for each patient. Nowadays, computational dynamic simulations have great potential and help researchers to find optimal and personalized solutions for each patient. Thus, the present work describes the development of an exoskeleton model in a neurorehabilitation perspective. First of all, a detailed description of gait patterns is presented, followed by the state of the art in robotics rehabilitation, considering that this field contains very powerful solutions for gait disorders. The model was developed in OpenSim, an open source software dedicated to model musculoskeletal systems and dynamic simulations of movement. In order to verify the accuracy of the model, experimental data were collected in static and motion trials performed with the wearable robot and afterwards compared with the simulated data resultant from Inverse Dynamics, a tool from OpenSim. The Exoskeleton model was successfully validated and then integrated in a new model, named ExoBody, within a musculoskeletal model. The ExoBody model was used to perform gait analysis comparing simulations with and without the exoskeleton, revealing some differences. Even though the built models present limitations, this work represents a step-forward in human-centered rehabilitation

    The History of Biomechanics in Total Hip Arthroplasty.

    Get PDF
    Biomechanics of the hip joint describes how the complex combination of osseous, ligamentous, and muscular structures transfers the weight of the body from the axial skeleton into the appendicular skeleton of the lower limbs. Throughout history, several biomechanical studies based on theoretical mathematics, in vitro, in vivo as well as in silico models have been successfully performed. The insights gained from these studies have improved our understanding of the development of mechanical hip pathologies such as osteoarthritis, hip fractures, and developmental dysplasia of the hip. The main treatment of end-stage degeneration of the hip is total hip arthroplasty (THA). The increasing number of patients undergoing this surgical procedure, as well as their demand for more than just pain relief and leading an active lifestyle, has challenged surgeons and implant manufacturers to deliver higher function as well as longevity with the prosthesis. The science of biomechanics has played and will continue to play a crucial and integral role in achieving these goals. The aim of this article, therefore, is to present to the readers the key concepts in biomechanics of the hip and their application to THA
    corecore