167,618 research outputs found

    Automatic Analysis of Brain Tissue and Structural Connectivity in MRI

    Get PDF
    Studies of the brain using magnetic resonance imaging (MRI) can provide insights in physiology and pathology that can eventually aid clinical diagnosis and therapy monitoring. MRI data acquired in these studies can be difficult, as well as laborious, to interpret and analyze by human observers. Moreover, analysis by human observers can hamper the reproducibility by both inter- and intra-observer variability. These studies do, therefore, require accurate and reproducible quantitative image analysis techniques to optimally benefit from the valuable information contained in the MRI data. In this thesis, we focus on the development and evaluation of quantitative analysis techniques for brain MRI data. In the first part of this thesis, we focus on automatic brain tissue and white matter lesion (WML) segmentation. We propose an automatic WML segmentation method based on fluid-attenuated inversion recovery (FLAIR) scans that can be added as an extension to brain tissue segmentation methods. We optimize and evaluate a previously proposed automatic brain tissue segmentation method in combination with the WML segmentation extension. We compare the accuracy and reproducibility of this newly developed segmentation framework to several other methods, some of which are publicly available. Additionally, we compare two brain tissue segmentation methods on the segmentation of longitudinal brain MRI data. The second part of this thesis is about structural brain connectivity based on diffusion MRI data. We propose a framework for analysis of structural connectivity in large groups of subjects. Structural connectivity is established using minimum cost paths based on the diffusion weighted images and is summarized in brain networks. Using statistical methods, we demonstrate that the obtained networks contain information regarding subject age, white matter lesion load and white matter atrophy. Finally, we evaluate the reproducibility of the proposed brain connectivity framework

    Two-photon microscopy : sequential imaging studies in vivo

    Get PDF
    Microscopists have always desired to look inside various organ tissues to study structure, function and dysfunction of their cellular constituents. In the past, this has frequently required tissue extraction and histological preparation to gain access. Traditional optical microscopy techniques, which use linear (one-photon) absorption processes for contrast generation, are limited to use near the tissue surface (< 80 ”m) because at greater depths strong and multiple light scattering blurs the images. Scattering particularly strongly affects signal strength in confocal microscopy, which achieves three-dimensional resolution and optical sectioning with a detection pinhole that rejects all light that appears not to originate from the focus. New optical microscopy techniques have been developed that use nonlinear light-matter interactions to generate signal contrast only within a thin raster-scanned plane. Since its first demonstration over a decade ago, two-photon microscopy has been applied to a variety of imaging tasks and has now become the technique of choice for fluorescence microscopy in thick tissue preparations and in live animals. The gain in resolution over conventional in vivo imaging techniques has been several orders of magnitude. Neuroscientists have used it to measure calcium dynamics deep in brain slices and in live animals, blood flow measurement, neuronal plasticity and to monitor neurodegenerative disease models in brain slices and in live rodents. These types of applications define the most important niche for two-photon microscopy - high-resolution imaging of physiology, morphology and cell-cell interactions in intact tissue. Clearly the biggest advantage of two-photon microscopy is in longitudinal monitoring of rodent models of disease or plasticity over days to weeks. The aim of this article is to discuss some methodological principles, and show some applications of this technique obtained from our laboratory in the area of acute experimental stroke research.peer-reviewe

    Dysfunctional play and dopamine physiology in the Fischer 344 rat

    Full text link
    Juvenile Fischer 344 rats are known to be less playful than other inbred strains, although the neurobiological substrate(s) responsible for this phenotype is uncertain. In the present study, Fischer 344 rats were compared to the commonly used outbred Sprague-Dawley strain on several behavioral and physiological parameters in order to ascertain whether the lack of play may be related to compromised activity of brain dopamine (DA) systems. As expected, Fischer 344 rats were far less playful than Sprague-Dawley rats, with Fischer 344 rats less likely to initiate playful contacts with a playful partner and less likely to respond playfully to these contacts. We also found that Fischer 344 rats showed less of a startle response and greater pre-pulse inhibition (PPI), especially at higher prepulse intensities. The increase in PPI seen in the Fischer 344 rat could be due to reduced DA modulation of sensorimotor gating and neurochemical measures were consistent with Fischer 344 rats releasing less DA than Sprague-Dawley rats. Fast scan cyclic voltammetry (FSCV) revealed Fischer 344 rats had less evoked DA release in dorsal and ventral striatal brain slices and high-performance liquid chromatography revealed Fischer 344 rats to have less DA turnover in the striatum and prefrontal cortex. We also found DA-dependent forms of cortical plasticity were deficient in the striatum and prefrontal cortex of the Fischer 344 rat. Taken together, these data indicate that deficits in play and enhanced PPI of Fischer 344 rats may be due to reduced DA modulation of corticostriatal and mesolimbic/mesocortical circuits critical to the execution of these behaviors

    Semiautomated Skeletonization of the Pulmonary Arterial Tree in Micro-CT Images

    Get PDF
    We present a simple and robust approach that utilizes planar images at different angular rotations combined with unfiltered back-projection to locate the central axes of the pulmonary arterial tree. Three-dimensional points are selected interactively by the user. The computer calculates a sub- volume unfiltered back-projection orthogonal to the vector connecting the two points and centered on the first point. Because more x-rays are absorbed at the thickest portion of the vessel, in the unfiltered back-projection, the darkest pixel is assumed to be the center of the vessel. The computer replaces this point with the newly computer-calculated point. A second back-projection is calculated around the original point orthogonal to a vector connecting the newly-calculated first point and user-determined second point. The darkest pixel within the reconstruction is determined. The computer then replaces the second point with the XYZ coordinates of the darkest pixel within this second reconstruction. Following a vector based on a moving average of previously determined 3- dimensional points along the vessel\u27s axis, the computer continues this skeletonization process until stopped by the user. The computer estimates the vessel diameter along the set of previously determined points using a method similar to the full width-half max algorithm. On all subsequent vessels, the process works the same way except that at each point, distances between the current point and all previously determined points along different vessels are determined. If the difference is less than the previously estimated diameter, the vessels are assumed to branch. This user/computer interaction continues until the vascular tree has been skeletonized

    Helmholtz’s Physiological Psychology

    Get PDF
    Hermann von Helmholtz (1821-1894) established results both controversial and enduring: analysis of mixed colors and of combination tones, arguments against nativism, and the analysis of sensation and perception using the techniques of natural science. The paper focuses on Helmholtz’s account of sensation, perception, and representation via “physiological psychology”. Helmholtz emphasized that external stimuli of sensations are causes, and sensations are their effects, and he had a practical and naturalist orientation toward the analysis of phenomenal experience. However, he argued as well that sensation must be interpreted to yield representation, and that representation is geared toward objective representation (the central thesis of contemporary intentionalism). The interpretation of sensation is based on “facts” revealed in experiment, but extends to the analysis of the quantitative, causal relationships between stimuli and responses. A key question for Helmholtz’s theory is the extent to which mental operations are to be ascribed a role in interpreting sensation
    • 

    corecore