10 research outputs found

    Unsupervised segmentation of natural images based on the adaptive integration of colour-texture descriptors

    Get PDF

    Deep Learning in Medical Image Analysis

    Get PDF
    The accelerating power of deep learning in diagnosing diseases will empower physicians and speed up decision making in clinical environments. Applications of modern medical instruments and digitalization of medical care have generated enormous amounts of medical images in recent years. In this big data arena, new deep learning methods and computational models for efficient data processing, analysis, and modeling of the generated data are crucially important for clinical applications and understanding the underlying biological process. This book presents and highlights novel algorithms, architectures, techniques, and applications of deep learning for medical image analysis

    Statistical and Machine Learning Models for Remote Sensing Data Mining - Recent Advancements

    Get PDF
    This book is a reprint of the Special Issue entitled "Statistical and Machine Learning Models for Remote Sensing Data Mining - Recent Advancements" that was published in Remote Sensing, MDPI. It provides insights into both core technical challenges and some selected critical applications of satellite remote sensing image analytics

    Seamless Multimodal Biometrics for Continuous Personalised Wellbeing Monitoring

    Full text link
    Artificially intelligent perception is increasingly present in the lives of every one of us. Vehicles are no exception, (...) In the near future, pattern recognition will have an even stronger role in vehicles, as self-driving cars will require automated ways to understand what is happening around (and within) them and act accordingly. (...) This doctoral work focused on advancing in-vehicle sensing through the research of novel computer vision and pattern recognition methodologies for both biometrics and wellbeing monitoring. The main focus has been on electrocardiogram (ECG) biometrics, a trait well-known for its potential for seamless driver monitoring. Major efforts were devoted to achieving improved performance in identification and identity verification in off-the-person scenarios, well-known for increased noise and variability. Here, end-to-end deep learning ECG biometric solutions were proposed and important topics were addressed such as cross-database and long-term performance, waveform relevance through explainability, and interlead conversion. Face biometrics, a natural complement to the ECG in seamless unconstrained scenarios, was also studied in this work. The open challenges of masked face recognition and interpretability in biometrics were tackled in an effort to evolve towards algorithms that are more transparent, trustworthy, and robust to significant occlusions. Within the topic of wellbeing monitoring, improved solutions to multimodal emotion recognition in groups of people and activity/violence recognition in in-vehicle scenarios were proposed. At last, we also proposed a novel way to learn template security within end-to-end models, dismissing additional separate encryption processes, and a self-supervised learning approach tailored to sequential data, in order to ensure data security and optimal performance. (...)Comment: Doctoral thesis presented and approved on the 21st of December 2022 to the University of Port

    Visual image processing in various representation spaces for documentary preservation

    Get PDF
    This thesis establishes an advanced image processing framework for the enhancement and restoration of historical document images (HDI) in both intensity (gray-scale or color) and multispectral (MS) representation spaces. It provides three major contributions: 1) the binarization of gray-scale HDI; 2) the visual quality restoration of MS HDI; and 3) automatic reference data (RD) estimation for HDI binarization. HDI binarization is one of the enhancement techniques that produces bi-level information which is easy to handle using methods of analysis (OCR, for instance) and is less computationally costly to process than 256 levels of grey or color images. Restoring the visual quality of HDI in an MS representation space enhances their legibility, which is not possible with conventional intensity-based restoration methods, and HDI legibility is the main concern of historians and librarians wishing to transfer knowledge and revive ancient cultural heritage. The use of MS imaging systems is a new and attractive research trend in the field of numerical processing of cultural heritage documents. In this thesis, these systems are also used for automatically estimating more accurate RD to be used for the evaluation of HDI binarization algorithms in order to track the level of human performance. Our first contribution, which is a new adaptive method of intensity-based binarization, is defined at the outset. Since degradation is present over document images, binarization methods must be adapted to handle degradation phenomena locally. Unfortunately, these methods are not effective, as they are not able to capture weak text strokes, which results in a deterioration of the performance of character recognition engines. The proposed approach first detects a subset of the most probable text pixels, which are used to locally estimate the parameters of the two classes of pixels (text and background), and then performs a simple maximum likelihood (ML) to locally classify the remaining pixels based on their class membership. To the best of our knowledge, this is the first time local parameter estimation and classification in an ML framework has been introduced for HDI binarization with promising results. A limitation of this method in the case with as the intensity-based methods of enhancement is that they are not effective in dealing with severely degraded HDI. Developing more advanced methods based on MS information would be a promising alternative avenue of research. In the second contribution, a novel approach to the visual restoration of HDI is defined. The approach is aimed at providing end users (historians, librarians, etc..) with better HDI visualization, specifically; it aims to restore them from degradations, while keeping the original appearance of the HDI intact. Practically, this problem cannot be solved by conventional intensity-based restoration methods. To cope with these limitations, MS imaging is used to produce additional spectral images in the invisible light (infrared and ultraviolet) range, which gives greater contrast to objects in the documents. The inpainting-based variational framework proposed here for HDI restoration involves isolating the degradation phenomena in the infrared spectral images, and then inpainting them in the visible spectral images. The final color image to visualize is therefore reconstructed from the restored visible spectral images. To the best of our knowledge, this is the first time the inpainting technique has been introduced for MS HDI. The experimental results are promising, and our objective, in collaboration with the BAnQ (Bibliothèque et Archives nationales de Québec), is to push heritage documents into the public domain and build an intelligent engine for accessing them. It is useful to note that the proposed model can be extended to other MS-based image processing tasks. Our third contribution is presented, which is to consider a new problem of RD (reference data) estimation, in order to show the importance of working with MS images rather than gray-scale or color images. RDs are mandatory for comparing different binarization algorithms, and they are usually generated by an expert. However, an expert’s RD is always subject to mislabeling and judgment errors, especially in the case of degraded data in restricted representation spaces (gray-scale or color images). In the proposed method, multiple RD generated by several experts are used in combination with MS HDI to estimate new, more accurate RD. The idea is to include the agreement of experts about labels and the multivariate data fidelity in a single Bayesian classification framework to estimate the a posteriori probability of new labels forming the final estimated RD. Our experiments show that estimated RD are more accurate than an expert’s RD. To the best of our knowledge, no similar work to combine binary data and multivariate data for the estimation of RD has been conducted

    A virtual object point model for the calibration of underwater stereo cameras to recover accurate 3D information

    Get PDF
    The focus of this thesis is on recovering accurate 3D information from underwater images. Underwater 3D reconstruction differs significantly from 3D reconstruction in air due to the refraction of light. In this thesis, the concepts of stereo 3D reconstruction in air get extended for underwater environments by an explicit consideration of refractive effects with the aid of a virtual object point model. Within underwater stereo 3D reconstruction, the focus of this thesis is on the refractive calibration of underwater stereo cameras

    Design, Development and Implementation Framework for a Postgraduate Non-Surgical Aesthetics Curriculum

    Get PDF
    Non-surgical aesthetics (NSA) procedures are primarily performed in private clinics away from traditional teaching hospital settings, establishing structured training and education in these procedures during residency training has been challenging. The objective of this study was to design and develop an evidence-based postgraduate curriculum in non-surgical aesthetics. It necessitated determining the current state of training and education for NSA procedures in postgraduate clinical education. Following a design-based research approach, a subsequent systematic literature review and a cross-sectional global-needs assessment study established the need for such a curriculum. Subsequent literature reviews and series of global Delphi studies have informed and guided the design and development of the conceptual framework, core curriculum content and finally, the implementation framework to facilitate the smooth delivery of the programme. The research also incorporated pilot studies for teaching methodology, assessment strategies like “objective structured practical examination (OSPE) and objective structured clinical examination (OSCE)”, which has shown to be very effective. The conceptual framework for curriculum design and development in NSA emerged from the global Delphi study. The conceptual framework is anchored on critical thinking and uses enquiry-based learning to develop information mastery, skills, and values and attitude. Moreover, relevant threshold concepts guided the construction of learning outcomes mapped against the core curriculum. The finding of this study is a crucial first step in bringing an evidence-based structure to training and education in NSA. This thesis will act as a ‘blueprint’ for the policymakers and program directors while curating a postgraduate programme in NSA

    Caminos que dividen: el Scalextric en Vigo

    Get PDF
    corecore