3,997 research outputs found

    A practical review on the measurement tools for cellular adhesion force

    Full text link
    Cell cell and cell matrix adhesions are fundamental in all multicellular organisms. They play a key role in cellular growth, differentiation, pattern formation and migration. Cell-cell adhesion is substantial in the immune response, pathogen host interactions, and tumor development. The success of tissue engineering and stem cell implantations strongly depends on the fine control of live cell adhesion on the surface of natural or biomimetic scaffolds. Therefore, the quantitative and precise measurement of the adhesion strength of living cells is critical, not only in basic research but in modern technologies, too. Several techniques have been developed or are under development to quantify cell adhesion. All of them have their pros and cons, which has to be carefully considered before the experiments and interpretation of the recorded data. Current review provides a guide to choose the appropriate technique to answer a specific biological question or to complete a biomedical test by measuring cell adhesion

    Influence of cell surface and nanomechanical properties on the flocculation ability of industrial <i>Saccharomyces cerevisiae</i> strains

    Get PDF
    In the past few years, atomic force microscopy (AFM) has provided novel information on the ultrastructural and nanomechanical properties of yeast cell walls that play a major role in determining the flocculation characteristics of the yeasts. In this study, we used AFM to visualize at the nanoscale the cell surface topography and to determine cell wall nanomechanical properties (e.g. elasticity) of different strains of S. cerevisiae employed for brewing, winemaking and fuel alcohol production. Cell surface topography was found to correlate with the flocculation behaviour of these strains during their late stationary phase, with the cell surface of flocculent cells being rougher than that of weakly flocculent cells. The elastic modulus of the yeast cell walls showed that weakly flocculent strains had a more rigid cell wall than highly flocculent strains. This difference in elasticity seemed to have an effect on the adhesive properties of the yeast cell walls, with weakly flocculent yeasts displaying higher adhesion energy than the highly flocculent strains. These findings seem to indicate that yeast cell surface nanomechanical properties play an important role in governing flocculation

    A Mechanical Mass Sensor with Yoctogram Resolution

    Full text link
    Nanoelectromechanical systems (NEMS) have generated considerable interest as inertial mass sensors. NEMS resonators have been used to weigh cells, biomolecules, and gas molecules, creating many new possibilities for biological and chemical analysis [1-4]. Recently, NEMS-based mass sensors have been employed as a new tool in surface science in order to study e.g. the phase transitions or the diffusion of adsorbed atoms on nanoscale objects [5-7]. A key point in all these experiments is the ability to resolve small masses. Here we report on mass sensing experiments with a resolution of 1.7 yg (1 yg = 10^-24 g), which corresponds to the mass of one proton, or one hydrogen atom. The resonator is made of a ~150 nm long carbon nanotube resonator vibrating at nearly 2 GHz. The unprecedented level of sensitivity allows us to detect adsorption events of naphthalene molecules (C10H8) and to measure the binding energy of a Xe atom on the nanotube surface (131 meV). These ultrasensitive nanotube resonators offer new opportunities for mass spectrometry, magnetometry, and adsorption experiments.Comment: submitted version of the manuscrip

    Extracellular polymeric bacterial coverages as minimal area surfaces

    Full text link
    Surfaces formed by extracellular polymeric substances enclosing individual and some small communities of {\it Acidithiobacillus ferrooxidans} on plates of hydrophobic silicon and hydrophilic mica are analyzed by means of atomic force microscopy imaging. Accurate nanoscale descriptions of such coverage surfaces are obtained. The good agreement with the predictions of a rather simple but realistic theoretical model allows us to conclude that they correspond, indeed, to minimal area surfaces enclosing a given volume associated with the encased bacteria. This is, to the best of our knowledge, the first shape characterization of the coverage formed by these biomolecules, with potential applications to the study of biofilms.Comment: 4 pages, 9 figures. v2: minor changes. v3: Terminology changes and extra references included. v4: Final versio

    Three-dimensional reconstruction of individual helical nano-filament structures from atomic force microscopy topographs

    Get PDF
    Atomic force microscopy, AFM, is a powerful tool that can produce detailed topographical images of individual nano-structures with a high signal-to-noise ratio without the need for ensemble averaging. However, the application of AFM in structural biology has been hampered by the tip-sample convolution effect, which distorts images of nano-structures, particularly those that are of similar dimensions to the cantilever probe tips used in AFM. Here we show that the tip-sample convolution results in a feature-dependent and non-uniform distribution of image resolution on AFM topographs. We show how this effect can be utilised in structural studies of nano-sized upward convex objects such as spherical or filamentous molecular assemblies deposited on a flat surface, because it causes ‘magnification’ of such objects in AFM topographs. Subsequently, this enhancement effect is harnessed through contact-point based deconvolution of AFM topographs. Here, the application of this approach is demonstrated through the 3D reconstruction of the surface envelope of individual helical amyloid filaments without the need of cross-particle averaging using the contact- deconvoluted AFM topographs. Resolving the structural variations of individual macromolecular assemblies within inherently heterogeneous populations is paramount for mechanistic understanding of many biological phenomena such as amyloid toxicity and prion strains. The approach presented here will also facilitate the use of AFM for high-resolution structural studies and integrative structural biology analysis of single molecular assemblies

    'Flying Plasmons': Fabry-P\`erot Resonances in Levitated Silver Nanowires

    Full text link
    Plasmonic nano structures such as wire waveguides or antennas are key building blocks for novel highly integrated photonics. A quantitative understanding of the optical material properties of individual structures on the nanoscale is thus indispensable for predicting and designing the functionality of complex composite elements. In this letter we study propagating surface plasmon polaritons in single silver nanowires isolated from its environment by levitation in a linear Paul trap. Symmetry-breaking effects, e.g., from supporting substrates are completely eliminated in this way. Illuminated with white light from a supercontinuum source, Fabry-P\`erot-like resonances are observed in the scattering spectra obtained from the ends of the nanowires. The plasmonic nature of the signal is verified by local excitation and photon collection corresponding to a clean transmission measurement through a Fabry-P\`erot resonator. A numerical simulation is used to compute the complex effective refractive indices of the nanowires as input parameter for a simple Fabry-P\`erot model, which nicely reproduces the measured spectra despite the highly dispersive nature of the system. Our studies pave the way for quantitative characterization of nearly any trappable plasmonic nano object, even of fragile ones such as droplets of liquids or molten metal and of nearly any nanoresonator based on a finite waveguide with implications for modeling of complex hybrid structures featuring strong coupling or lasing. Moreover, the configuration has the potential to be complemented by gas sensors to study the impact of hot electrons on catalytic reactions nearby plasmonic particles

    Tip-Enhanced Laser Ablation Sample Transfer for Mass Spectrometry

    Get PDF
    In this research, atomic force microscope tip-enhanced laser ablation mass spectrometry (AFM TELA-MS), an ambient sub-micrometer scale sampling method for offline MS was developed. AFM TELA was used to transfer molecules from thin films to a suspended silver wire for off-line mass spectrometry using laser desorption ionization (LDI) and matrix-assisted laser desorption ionization (MALDI). An AFM with a 30 nm radius gold-coated silicon tip was used to image the sample and to hold the tip 15 nm from the surface for material removal using a pulsed Nd:YAG laser, which provides output at wavelengths of 532 nm in the visible, 1064 nm in the near IR, or the 355 nm UV wavelength. The laser is mildly focused onto the AFM tip and the fluence is set just below the far-field ablation threshold to irradiate the AFM tip for material removal with a smaller spot size than a laser focused with a conventional lens system. The AFM is used to image ablation craters and place the tip at the area being analyzed. For small molecules, approximately 100 fg of material was ablated from each of the 1 µm ablation spots and transferred with approximately 3% efficiency. AFM-TELA of large biomolecules was also demonstrated at 3% efficiency and a mass range up to 600 Da. AFM-TELA studies with different laser parameters indicated that the tip-enhanced material ejection depends on laser wavelength, polarization, fluence, and number of laser shots used for material ejection, but not on the absorption of the sample itself. The utility of AFM-TELA was applied to sampling of rat brain tissue. The ability of producing sub-micrometer scale craters, capture on a suspended silver wire and detection of lipids were demonstrated using off-line MALDI MS

    Tip enhanced laser ablation sample transfer for mass spectrometry

    Get PDF
    © 2015 Materials Research Society. Mass spectrometry is one of the primary analysis techniques for biological analysis but there are technological barriers in sampling scale that must be overcome for it to be used to its full potential on the size scale of single cells. Current mass spectrometry imaging methods are limited in spatial resolution when analyzing large biomolecules. The goal of this project is to use atomic force microscope (AFM) tip enhanced laser ablation to remove material from cells and tissue and capture it for subsequent mass spectrometry analysis. The laser ablation sample transfer system uses an AFM stage to hold the metal-coated tip at a distance of approximately 10 nm from a sample surface. The metal tip acts as an antenna for the electromagnetic radiation and enables the ablation of the sample with a spot size much smaller than a laser focused with a conventional lens system. A pulsed nanosecond UV or visible wavelength laser is focused onto the gold-coated silicon tip at an angle nearly parallel with the surface, which results in the removal of material from a spot between 500 nm and 1 um in diameter and 200 and 500 nm deep. This corresponds to a few picograms of ablated material, which can be captured on a metal surface for MALDI analysis. We have used this approach to transfer small peptides and proteins from a thin film for analysis by mass spectrometry as a first step toward high spatial resolution imaging
    • …
    corecore