322 research outputs found

    Hyperspectral Imaging for Fine to Medium Scale Applications in Environmental Sciences

    Get PDF
    The aim of the Special Issue “Hyperspectral Imaging for Fine to Medium Scale Applications in Environmental Sciences” was to present a selection of innovative studies using hyperspectral imaging (HSI) in different thematic fields. This intention reflects the technical developments in the last three decades, which have brought the capacity of HSI to provide spectrally, spatially and temporally detailed data, favoured by e.g., hyperspectral snapshot technologies, miniaturized hyperspectral sensors and hyperspectral microscopy imaging. The present book comprises a suite of papers in various fields of environmental sciences—geology/mineral exploration, digital soil mapping, mapping and characterization of vegetation, and sensing of water bodies (including under-ice and underwater applications). In addition, there are two rather methodically/technically-oriented contributions dealing with the optimized processing of UAV data and on the design and test of a multi-channel optical receiver for ground-based applications. All in all, this compilation documents that HSI is a multi-faceted research topic and will remain so in the future

    Bio-Inspired Multi-Spectral and Polarization Imaging Sensors for Image-Guided Surgery

    Get PDF
    Image-guided surgery (IGS) can enhance cancer treatment by decreasing, and ideally eliminating, positive tumor margins and iatrogenic damage to healthy tissue. Current state-of-the-art near-infrared fluorescence imaging systems are bulky, costly, lack sensitivity under surgical illumination, and lack co-registration accuracy between multimodal images. As a result, an overwhelming majority of physicians still rely on their unaided eyes and palpation as the primary sensing modalities to distinguish cancerous from healthy tissue. In my thesis, I have addressed these challenges in IGC by mimicking the visual systems of several animals to construct low power, compact and highly sensitive multi-spectral and color-polarization sensors. I have realized single-chip multi-spectral imagers with 1000-fold higher sensitivity and 7-fold better spatial co-registration accuracy compared to clinical imaging systems in current use by monolithically integrating spectral tapetal and polarization filters with an array of vertically stacked photodetectors. These imaging sensors yield the unique capabilities of imaging simultaneously color, polarization, and multiple fluorophores for near-infrared fluorescence imaging. Preclinical and clinical data demonstrate seamless integration of this technologies in the surgical work flow while providing surgeons with real-time information on the location of cancerous tissue and sentinel lymph nodes, respectively. Due to its low cost, the bio-inspired sensors will provide resource-limited hospitals with much-needed technology to enable more accurate value-based health care

    Histopathological image analysis : a review

    Get PDF
    Over the past decade, dramatic increases in computational power and improvement in image analysis algorithms have allowed the development of powerful computer-assisted analytical approaches to radiological data. With the recent advent of whole slide digital scanners, tissue histopathology slides can now be digitized and stored in digital image form. Consequently, digitized tissue histopathology has now become amenable to the application of computerized image analysis and machine learning techniques. Analogous to the role of computer-assisted diagnosis (CAD) algorithms in medical imaging to complement the opinion of a radiologist, CAD algorithms have begun to be developed for disease detection, diagnosis, and prognosis prediction to complement the opinion of the pathologist. In this paper, we review the recent state of the art CAD technology for digitized histopathology. This paper also briefly describes the development and application of novel image analysis technology for a few specific histopathology related problems being pursued in the United States and Europe

    Hyperspectral imaging of the microscale distribution and dynamics of microphytobenthos in intertidal sediments

    Get PDF
    We describe a novel, field-deployable hyperspectral imaging system, called Hypersub, that allows noninvasive in situ mapping of the microphytobenthos (MPB) biomass distribution with a high spatial (sub-millimeter) and temporal (minutes) resolution over areas of 1 x 1 m. The biomass is derived from a log-transformed and near-infrared corrected reflectance hyperspectral index, which exhibits a linear relationship (R-2 > 0.97) with the chlorophyll a (Ch1 a) concentration in the euphotic zone of the sediment and depends on the sediment grain size. Deployments of the system revealed that due to factors such as sediment topography, bioturbation, and grazing, the distribution of MPB in intertidal sediments is remarkably heterogeneous, with Ch1 a concentrations varying laterally by up to 400% of the average value over a distance of 1 cm. Furthermore, due to tidal cycling and diel light variability, MPB concentrations in the top 1 mm of sediments are very dynamic, changing by 40-80% over a few hours due to vertical migration. We argue that the high-resolution hyperspectral imaging method overcomes the inadequate resolution of traditional methods based on sedimentary Ch1 a extraction, and thus helps improve our understanding of the processes that control benthic primary production in coastal sediments

    Digital Techniques for Documenting and Preserving Cultural Heritage

    Get PDF
    In this unique collection the authors present a wide range of interdisciplinary methods to study, document, and conserve material cultural heritage. The methods used serve as exemplars of best practice with a wide variety of cultural heritage objects having been recorded, examined, and visualised. The objects range in date, scale, materials, and state of preservation and so pose different research questions and challenges for digitization, conservation, and ontological representation of knowledge. Heritage science and specialist digital technologies are presented in a way approachable to non-scientists, while a separate technical section provides details of methods and techniques, alongside examples of notable applications of spatial and spectral documentation of material cultural heritage, with selected literature and identification of future research. This book is an outcome of interdisciplinary research and debates conducted by the participants of the COST Action TD1201, Colour and Space in Cultural Heritage, 2012–16 and is an Open Access publication available under a CC BY-NC-ND licence.https://scholarworks.wmich.edu/mip_arc_cdh/1000/thumbnail.jp

    Bio-Inspired Multi-Spectral Imaging Sensors and Algorithms for Image Guided Surgery

    Get PDF
    Image guided surgery (IGS) utilizes emerging imaging technologies to provide additional structural and functional information to the physician in clinical settings. This additional visual information can help physicians delineate cancerous tissue during resection as well as avoid damage to near-by healthy tissue. Near-infrared (NIR) fluorescence imaging (700 nm to 900 nm wavelengths) is a promising imaging modality for IGS, namely for the following reasons: First, tissue absorption and scattering in the NIR window is very low, which allows for deeper imaging and localization of tumor tissue in the range of several millimeters to a centimeter depending on the tissue surrounding the tumor. Second, spontaneous tissue fluorescence emission is minimal in the NIR region, allowing for high signal-to-background ratio imaging compared to visible spectrum fluorescence imaging. Third, decoupling the fluorescence signal from the visible spectrum allows for optimization of NIR fluorescence while attaining high quality color images. Fourth, there are two FDA approved fluorescent dyes in the NIR region—namely methylene blue (MB) and indocyanine green—which can help to identify tumor tissue due to passive accumulation in human subjects. The aforementioned advantages have led to the development of NIR fluorescence imaging systems for a variety of clinical applications, such as sentinel lymph node imaging, angiography, and tumor margin assessment. With these technological advances, secondary surgeries due to positive tumor margins or damage to healthy organs can be largely mitigated, reducing the emotional and financial toll on the patient. Currently, several NIR fluorescence imaging systems (NFIS) are available commercially or are undergoing clinical trials, such as FLARE, SPY, PDE, Fluobeam, and others. These systems capture multi-spectral images using complex optical equipment and are combined with real-time image processing to present an augmented view to the surgeon. The information is presented on a standard monitor above the operating bed, which requires the physician to stop the surgical procedure and look up at the monitor. The break in the surgical flow sometimes outweighs the benefits of fluorescence based IGS, especially in time-critical surgical situations. Furthermore, these instruments tend to be very bulky and have a large foot print, which significantly complicates their adoption in an already crowded operating room. In this document, I present the development of a compact and wearable goggle system capable of real-time sensing of both NIR fluorescence and color information. The imaging system is inspired by the ommatidia of the monarch butterfly, in which pixelated spectral filters are integrated with light sensitive elements. The pixelated spectral filters are fabricated via a carefully optimized nanofabrication procedure and integrated with a CMOS imaging array. The entire imaging system has been optimized for high signal-to-background fluorescence imaging using an analytical approach, and the efficacy of the system has been experimentally verified. The bio-inspired spectral imaging sensor is integrated with an FPGA for compact and real-time signal processing and a wearable goggle for easy integration in the operating room. The complete imaging system is undergoing clinical trials at Washington University in the St. Louis Medical School for imaging sentinel lymph nodes in both breast cancer patients and melanoma patients

    An alternative method using digital cameras for continuous monitoring of crop status

    Get PDF
    Crop physiological and phenological status is an important factor that characterizes crop yield as well as carbon exchange between the atmosphere and the terrestrial biosphere in agroecosystems. It is difficult to establish high frequency observations of crop status in multiple locations using conventional approaches such as agronomical sampling and also remote sensing techniques that use spectral radiometers because of the labor intensive work required for field surveys and the high cost of radiometers designed for scientific use. This study explored the potential utility of an inexpensive camera observation system called crop phenology recording system (CPRS) as an alternative approach for the observation of seasonal change in crop growth. The CPRS consisting of two compact digital cameras was used to capture visible and near infrared (NIR) images of maize in 2009 and soybean in 2010 for every hour both day and night continuously. In addition, a four channel sensor SKYE measured crop reflectance and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images were acquired over crop fields. The six different camera- radiometer- and MODIS-derived vegetation indices (VIs) were calculated and compared with the ground-measured crop biophysical parameters. In addition to VIs that use digital numbers, we proposed to use daytime exposure value-adjusted VIs. The camera-derived VIs were compared with the VIs calculated from spectral reflectance observations taken by SKYE and MODIS. It was found that new camera-derived VIs using daytime exposure values are closely related to VIs calculated using SKYE and MODIS reflectance and good proxies of crop biophysical parameters. Camera-derived green chlorophyll index, simple ratio and NDVI were found to be able to estimate the total leaf area index (LAI) of maize and soybean with high accuracy and were better than the widely used 2g-r-b. However, camera-derived 2g-r-b showed the best accuracy in estimating daily fAPAR in vegetative and reproductive stages of both crops. Visible atmospherically resistant vegetation index showed the highest accuracy in the estimation of the green LAI of maize. A unique VI, calculated from nighttime flash NIR images called the nighttime relative brightness index of NIR, showed a strong relationship with total aboveground biomass for both crops. The study concludes that the CPRS is a practical and cost-effective approach for monitoring temporal changes in crop growth, and it also provides an alternative source of ground truth data to validate time-series VIs derived from MODIS and other satellite systems

    An alternative method using digital cameras for continuous monitoring of crop status

    Get PDF
    Crop physiological and phenological status is an important factor that characterizes crop yield as well as carbon exchange between the atmosphere and the terrestrial biosphere in agroecosystems. It is difficult to establish high frequency observations of crop status in multiple locations using conventional approaches such as agronomical sampling and also remote sensing techniques that use spectral radiometers because of the labor intensive work required for field surveys and the high cost of radiometers designed for scientific use. This study explored the potential utility of an inexpensive camera observation system called crop phenology recording system (CPRS) as an alternative approach for the observation of seasonal change in crop growth. The CPRS consisting of two compact digital cameras was used to capture visible and near infrared (NIR) images of maize in 2009 and soybean in 2010 for every hour both day and night continuously. In addition, a four channel sensor SKYE measured crop reflectance and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images were acquired over crop fields. The six different camera- radiometer- and MODIS-derived vegetation indices (VIs) were calculated and compared with the ground-measured crop biophysical parameters. In addition to VIs that use digital numbers, we proposed to use daytime exposure value-adjusted VIs. The camera-derived VIs were compared with the VIs calculated from spectral reflectance observations taken by SKYE and MODIS. It was found that new camera-derived VIs using daytime exposure values are closely related to VIs calculated using SKYE and MODIS reflectance and good proxies of crop biophysical parameters. Camera-derived green chlorophyll index, simple ratio and NDVI were found to be able to estimate the total leaf area index (LAI) of maize and soybean with high accuracy and were better than the widely used 2g-r-b. However, camera-derived 2g-r-b showed the best accuracy in estimating daily fAPAR in vegetative and reproductive stages of both crops. Visible atmospherically resistant vegetation index showed the highest accuracy in the estimation of the green LAI of maize. A unique VI, calculated from nighttime flash NIR images called the nighttime relative brightness index of NIR, showed a strong relationship with total aboveground biomass for both crops. The study concludes that the CPRS is a practical and cost-effective approach for monitoring temporal changes in crop growth, and it also provides an alternative source of ground truth data to validate time-series VIs derived from MODIS and other satellite systems

    Perspective Chapter: Hyperspectral Imaging for the Analysis of Seafood

    Get PDF
    Hyperspectral imaging technology is able to provide useful information about the interaction between electromagnetic radiation and matter. This information makes possible chemical characterization of materials in a non-invasive manner. For this reason, the technology has been of great interest for the food industry in recent decades. In this book chapter, we provide a survey of the current status of the use of hyperspectral technology for seafood evaluation. First, we provide a brief description of the optical properties of tissue and an introduction to the instrumentation used to capture these images. Then, we survey the main applications of hyperspectral imaging in the seafood industry, including the quantification of different chemical components, the estimation of freshness, the quality assessment of seafood products, and the detection of nematodes, among others. Finally, we provide a discussion about the current state of the art and the upcoming challenges for the application of this technology in the seafood industry
    • 

    corecore