1,424 research outputs found

    Enhanced perception in volume visualization

    Get PDF
    Due to the nature of scientic data sets, the generation of convenient visualizations may be a difficult task, but crucial to correctly convey the relevant information of the data. When working with complex volume models, such as the anatomical ones, it is important to provide accurate representations, since a misinterpretation can lead to serious mistakes while diagnosing a disease or planning surgery. In these cases, enhancing the perception of the features of interest usually helps to properly understand the data. Throughout years, researchers have focused on different methods to improve the visualization of volume data sets. For instance, the definition of good transfer functions is a key issue in Volume Visualization, since transfer functions determine how materials are classified. Other approaches are based on simulating realistic illumination models to enhance the spatial perception, or using illustrative effects to provide the level of abstraction needed to correctly interpret the data. This thesis contributes with new approaches to enhance the visual and spatial perception in Volume Visualization. Thanks to the new computing capabilities of modern graphics hardware, the proposed algorithms are capable of modifying the illumination model and simulating illustrative motifs in real time. In order to enhance local details, which are useful to better perceive the shape and the surfaces of the volume, our first contribution is an algorithm that employs a common sharpening operator to modify the lighting applied. As a result, the overall contrast of the visualization is enhanced by brightening the salient features and darkening the deeper regions of the volume model. The enhancement of depth perception in Direct Volume Rendering is also covered in the thesis. To do this, we propose two algorithms to simulate ambient occlusion: a screen-space technique based on using depth information to estimate the amount of light occluded, and a view-independent method that uses the density values of the data set to estimate the occlusion. Additionally, depth perception is also enhanced by adding halos around the structures of interest. Maximum Intensity Projection images provide a good understanding of the high intensity features of the data, but lack any contextual information. In order to enhance the depth perception in such a case, we present a novel technique based on changing how intensity is accumulated. Furthermore, the perception of the spatial arrangement of the displayed structures is also enhanced by adding certain colour cues. The last contribution is a new manipulation tool designed for adding contextual information when cutting the volume. Based on traditional illustrative effects, this method allows the user to directly extrude structures from the cross-section of the cut. As a result, the clipped structures are displayed at different heights, preserving the information needed to correctly perceive them.Debido a la naturaleza de los datos científicos, visualizarlos correctamente puede ser una tarea complicada, pero crucial para interpretarlos de forma adecuada. Cuando se trabaja con modelos de volumen complejos, como es el caso de los modelos anatómicos, es importante generar imágenes precisas, ya que una mala interpretación de las mismas puede producir errores graves en el diagnóstico de enfermedades o en la planificación de operaciones quirúrgicas. En estos casos, mejorar la percepción de las zonas de interés, facilita la comprensión de la información inherente a los datos. Durante décadas, los investigadores se han centrado en el desarrollo de técnicas para mejorar la visualización de datos volumétricos. Por ejemplo, los métodos que permiten definir buenas funciones de transferencia son clave, ya que éstas determinan cómo se clasifican los materiales. Otros ejemplos son las técnicas que simulan modelos de iluminación realista, que permiten percibir mejor la distribución espacial de los elementos del volumen, o bien los que imitan efectos ilustrativos, que proporcionan el nivel de abstracción necesario para interpretar correctamente los datos. El trabajo presentado en esta tesis se centra en mejorar la percepción de los elementos del volumen, ya sea modificando el modelo de iluminación aplicado en la visualización, o simulando efectos ilustrativos. Aprovechando la capacidad de cálculo de los nuevos procesadores gráficos, se describen un conjunto de algoritmos que permiten obtener los resultados en tiempo real. Para mejorar la percepción de detalles locales, proponemos modificar el modelo de iluminación utilizando una conocida herramienta de procesado de imágenes (unsharp masking). Iluminando aquellos detalles que sobresalen de las superficies y oscureciendo las zonas profundas, se mejora el contraste local de la imagen, con lo que se consigue realzar los detalles de superficie. También se presentan diferentes técnicas para mejorar la percepción de la profundidad en Direct Volume Rendering. Concretamente, se propone modificar la iluminación teniendo en cuenta la oclusión ambiente de dos maneras diferentes: la primera utiliza los valores de profundidad en espacio imagen para calcular el factor de oclusión del entorno de cada pixel, mientras que la segunda utiliza los valores de densidad del volumen para aproximar dicha oclusión en cada vóxel. Además de estas dos técnicas, también se propone mejorar la percepción espacial y de la profundidad de ciertas estructuras mediante la generación de halos. La técnica conocida como Maximum Intensity Projection (MIP) permite visualizar los elementos de mayor intensidad del volumen, pero no aporta ningún tipo de información contextual. Para mejorar la percepción de la profundidad, proponemos una nueva técnica basada en cambiar la forma en la que se acumula la intensidad en MIP. También se describe un esquema de color para mejorar la percepción espacial de los elementos visualizados. La última contribución de la tesis es una herramienta de manipulación directa de los datos, que permite preservar la información contextual cuando se realizan cortes en el modelo de volumen. Basada en técnicas ilustrativas tradicionales, esta técnica permite al usuario estirar las estructuras visibles en las secciones de los cortes. Como resultado, las estructuras de interés se visualizan a diferentes alturas sobre la sección, lo que permite al observador percibirlas correctamente

    Hybrid rendering of exploded views for medical image atlas visualization

    Get PDF
    Medical image atlases contain much information about human anatomy, but learning the shapes of anatomical regions and making sense of the overall structure defined in the atlas can be problematic. Atlases may contain hundreds of regions with complex shapes which can be tightly packed together. This makes visualisation difficult since the shapes can fit together in complex ways and visually obscure each other. In this work, we describe a technique which enables interactive exploration of medical image atlases that permits the hierarchical structure of the atlas and the content of an underlying medical image to be investigated simultaneously. Our method enables a user to create visualizations of the atlas similar to the exploded views used in technical illustrations to show the structure of mechanical assemblies. These views are constrained by the geometry of the atlas and the hierarchical structure to reduce the complexity of user interaction. We also enable the user to explode the atlas meshes themselves. The atlas meshes are registered with a medical image which is displayed on the cut surfaces of the meshes using raycasting. Results from the AAL human brain atlas are presented and discussed

    High resolution 3-Dimensional imaging of the human cardiac conduction system from microanatomy to mathematical modeling

    Get PDF
    Cardiac arrhythmias and conduction disturbances are accompanied by structural remodelling of the specialised cardiomyocytes known collectively as the cardiac conduction system. Here, using contrast enhanced micro-computed tomography, we present, in attitudinally appropriate fashion, the first 3-dimensional representations of the cardiac conduction system within the intact human heart. We show that cardiomyocyte orientation can be extracted from these datasets at spatial resolutions approaching the single cell. These data show that commonly accepted anatomical representations are oversimplified. We have incorporated the high-resolution anatomical data into mathematical simulations of cardiac electrical depolarisation. The data presented should have multidisciplinary impact. Since the rate of depolarisation is dictated by cardiac microstructure, and the precise orientation of the cardiomyocytes, our data should improve the fidelity of mathematical models. By showing the precise 3-dimensional relationships between the cardiac conduction system and surrounding structures, we provide new insights relevant to valvar replacement surgery and ablation therapies. We also offer a practical method for investigation of remodelling in disease, and thus, virtual pathology and archiving. Such data presented as 3D images or 3D printed models, will inform discussions between medical teams and their patients, and aid the education of medical and surgical trainees

    Unwind: Interactive Fish Straightening

    Full text link
    The ScanAllFish project is a large-scale effort to scan all the world's 33,100 known species of fishes. It has already generated thousands of volumetric CT scans of fish species which are available on open access platforms such as the Open Science Framework. To achieve a scanning rate required for a project of this magnitude, many specimens are grouped together into a single tube and scanned all at once. The resulting data contain many fish which are often bent and twisted to fit into the scanner. Our system, Unwind, is a novel interactive visualization and processing tool which extracts, unbends, and untwists volumetric images of fish with minimal user interaction. Our approach enables scientists to interactively unwarp these volumes to remove the undesired torque and bending using a piecewise-linear skeleton extracted by averaging isosurfaces of a harmonic function connecting the head and tail of each fish. The result is a volumetric dataset of a individual, straight fish in a canonical pose defined by the marine biologist expert user. We have developed Unwind in collaboration with a team of marine biologists: Our system has been deployed in their labs, and is presently being used for dataset construction, biomechanical analysis, and the generation of figures for scientific publication

    Doctor of Philosophy

    Get PDF
    dissertationConfocal microscopy has become a popular imaging technique in biology research in recent years. It is often used to study three-dimensional (3D) structures of biological samples. Confocal data are commonly multichannel, with each channel resulting from a different fluorescent staining. This technique also results in finely detailed structures in 3D, such as neuron fibers. Despite the plethora of volume rendering techniques that have been available for many years, there is a demand from biologists for a flexible tool that allows interactive visualization and analysis of multichannel confocal data. Together with biologists, we have designed and developed FluoRender. It incorporates volume rendering techniques such as a two-dimensional (2D) transfer function and multichannel intermixing. Rendering results can be enhanced through tone-mappings and overlays. To facilitate analyses of confocal data, FluoRender provides interactive operations for extracting complex structures. Furthermore, we developed the Synthetic Brainbow technique, which takes advantage of the asynchronous behavior in Graphics Processing Unit (GPU) framebuffer loops and generates random colorizations for different structures in single-channel confocal data. The results from our Synthetic Brainbows, when applied to a sequence of developing cells, can then be used for tracking the movements of these cells. Finally, we present an application of FluoRender in the workflow of constructing anatomical atlases

    Tensor Regression with Applications in Neuroimaging Data Analysis

    Get PDF
    Classical regression methods treat covariates as a vector and estimate a corresponding vector of regression coefficients. Modern applications in medical imaging generate covariates of more complex form such as multidimensional arrays (tensors). Traditional statistical and computational methods are proving insufficient for analysis of these high-throughput data due to their ultrahigh dimensionality as well as complex structure. In this article, we propose a new family of tensor regression models that efficiently exploit the special structure of tensor covariates. Under this framework, ultrahigh dimensionality is reduced to a manageable level, resulting in efficient estimation and prediction. A fast and highly scalable estimation algorithm is proposed for maximum likelihood estimation and its associated asymptotic properties are studied. Effectiveness of the new methods is demonstrated on both synthetic and real MRI imaging data.Comment: 27 pages, 4 figure

    Crepuscular Rays for Tumor Accessibility Planning

    Get PDF

    Towards Advanced Interactive Visualization for Virtual Atlases

    Get PDF
    Under embargo until: 2020-07-24An atlas is generally defined as a bound collection of tables, charts or illustrations describing a phenomenon. In an anatomical atlas for example, a collection of representative illustrations and text describes anatomy for the purpose of communicating anatomical knowledge. The atlas serves as reference frame for comparing and integrating data from different sources by spatially or semantically relating collections of drawings, imaging data, and/or text. In the field of medical image processing, atlas information is often constructed from a collection of regions of interest, which are based on medical images that are annotated by domain experts. Such an atlas may be employed, for example, for automatic segmentation of medical imaging data. The combination of interactive visualization techniques with atlas information opens up new possibilities for content creation, curation, and navigation in virtual atlases. With interactive visualization of atlas information, students are able to inspect and explore anatomical atlases in ways that were not possible with the traditional method of presenting anatomical atlases in book format, such as viewing the illustrations from other viewpoints. With advanced interaction techniques, it becomes possible to query the data that forms the basis for the atlas, thus empowering researchers to access a wealth of information in new ways. So far, atlas-based visualization has been employed mainly for medical education, as well as biological research. In this survey, we provide an overview of current digital biomedical atlas tasks and applications and summarize relevant visualization techniques. We discuss recent approaches for providing next-generation visual interfaces to navigate atlas data that go beyond common text-based search and hierarchical lists. Finally, we reflect on open challenges and opportunities for the next steps in interactive atlas visualization.acceptedVersio
    corecore