27 research outputs found

    Computational strategies for understanding underwater optical image datasets

    Get PDF
    Thesis: Ph. D. in Mechanical and Oceanographic Engineering, Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Mechanical Engineering; and the Woods Hole Oceanographic Institution), 2013.Cataloged from PDF version of thesis.Includes bibliographical references (pages 117-135).A fundamental problem in autonomous underwater robotics is the high latency between the capture of image data and the time at which operators are able to gain a visual understanding of the survey environment. Typical missions can generate imagery at rates hundreds of times greater than highly compressed images can be transmitted acoustically, delaying that understanding until after the vehicle has been recovered and the data analyzed. While automated classification algorithms can lessen the burden on human annotators after a mission, most are too computationally expensive or lack the robustness to run in situ on a vehicle. Fast algorithms designed for mission-time performance could lessen the latency of understanding by producing low-bandwidth semantic maps of the survey area that can then be telemetered back to operators during a mission. This thesis presents a lightweight framework for processing imagery in real time aboard a robotic vehicle. We begin with a review of pre-processing techniques for correcting illumination and attenuation artifacts in underwater images, presenting our own approach based on multi-sensor fusion and a strong physical model. Next, we construct a novel image pyramid structure that can reduce the complexity necessary to compute features across multiple scales by an order of magnitude and recommend features which are fast to compute and invariant to underwater artifacts. Finally, we implement our framework on real underwater datasets and demonstrate how it can be used to select summary images for the purpose of creating low-bandwidth semantic maps capable of being transmitted acoustically.by Jeffrey W. Kaeli.Ph. D. in Mechanical and Oceanographic Engineerin

    Novel Texture-based Probabilistic Object Recognition and Tracking Techniques for Food Intake Analysis and Traffic Monitoring

    Get PDF
    More complex image understanding algorithms are increasingly practical in a host of emerging applications. Object tracking has value in surveillance and data farming; and object recognition has applications in surveillance, data management, and industrial automation. In this work we introduce an object recognition application in automated nutritional intake analysis and a tracking application intended for surveillance in low quality videos. Automated food recognition is useful for personal health applications as well as nutritional studies used to improve public health or inform lawmakers. We introduce a complete, end-to-end system for automated food intake measurement. Images taken by a digital camera are analyzed, plates and food are located, food type is determined by neural network, distance and angle of food is determined and 3D volume estimated, the results are cross referenced with a nutritional database, and before and after meal photos are compared to determine nutritional intake. We compare against contemporary systems and provide detailed experimental results of our system\u27s performance. Our tracking systems consider the problem of car and human tracking on potentially very low quality surveillance videos, from fixed camera or high flying \acrfull{uav}. Our agile framework switches among different simple trackers to find the most applicable tracker based on the object and video properties. Our MAPTrack is an evolution of the agile tracker that uses soft switching to optimize between multiple pertinent trackers, and tracks objects based on motion, appearance, and positional data. In both cases we provide comparisons against trackers intended for similar applications i.e., trackers that stress robustness in bad conditions, with competitive results

    Robust Methods for Accurate and Efficient Reconstruction from Motion Imagery

    Get PDF
    Creating virtual representations of real-world scenes has been a long-standing goal in photogrammetry and computer vision, and has high practical relevance in industries involved in creating intelligent urban solutions. This includes a wide range of applications such as urban and community planning, reconnaissance missions by the military and government, autonomous robotics, virtual reality, cultural heritage preservation, and many others. Over the last decades, image-based modeling emerged as one of the most popular solutions. The objective is to extract metric information directly from images. Many procedural techniques achieve good results in terms of robustness, accuracy, completeness, and efficiency. More recently, deep-learning-based techniques were proposed to tackle this problem by training on vast amounts of data to learn to associate features between images through deep convolutional neural networks and were shown to outperform traditional procedural techniques. However, many of the key challenges such as large displacement and scalability still remain, especially when dealing with large-scale aerial imagery. This thesis investigates image-based modeling and proposes robust and scalable methods for large-scale aerial imagery. First, we present a method for reconstructing large-scale areas from aerial imagery that formulates the solution as a single-step process, reducing the processing time considerably. Next, we address feature matching and propose a variational optical flow technique (HybridFlow) for dense feature matching that leverages the robustness of graph matching to large displacements. The proposed solution efficiently handles arbitrary-sized aerial images. Finally, for general-purpose image-based modeling, we propose a deep-learning-based approach, an end-to-end multi-view structure from motion employing hypercorrelation volumes for learning dense feature matches. We demonstrate the application of the proposed techniques on several applications and report on task-related measures

    Colour and Colorimetry Multidisciplinary Contributions Vol. XIb

    Get PDF
    It is well known that the subject of colour has an impact on a range of disciplines. Colour has been studied in depth for many centuries, and as well as contributing to theoretical and scientific knowledge, there have been significant developments in applied colour research, which has many implications for the wider socio-economic community. At the 7th Convention of Colorimetry in Parma, on the 1st October 2004, as an evolution of the previous SIOF Group of Colorimetry and Reflectoscopy founded in 1995, the "Gruppo del Colore" was established. The objective was to encourage multi and interdisciplinary collaboration and networking between people in Italy that addresses problems and issues on colour and illumination from a professional, cultural and scientific point of view. On the 16th of September 2011 in Rome, in occasion of the VII Color Conference, the members assembly decided to vote for the autonomy of the group. The autonomy of the Association has been achieved in early 2012. These are the proceedings of the English sessions of the XI Conferenza del Colore

    Earth Resources: A continuing bibliography (issue 32)

    Get PDF
    This bibliography list 580 reports, articles and other documents introduced into the NASA scientific and technical information system. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis

    Adaptive techniques with polynomial models for segmentation, approximation and analysis of faces in video sequences

    Get PDF

    Engineering Data Compendium. Human Perception and Performance, Volume 1

    Get PDF
    The concept underlying the Engineering Data Compendium was the product an R and D program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design of military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by system designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is Volume 1, which contains sections on Visual Acquisition of Information, Auditory Acquisition of Information, and Acquisition of Information by Other Senses

    Remote Sensing of Earth Resources: A literature survey with indexes (1970 - 1973 supplement). Section 1: Abstracts

    Get PDF
    Abstracts of reports, articles, and other documents introduced into the NASA scientific and technical information system between March 1970 and December 1973 are presented in the following areas: agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, oceanography and marine resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis
    corecore