163 research outputs found

    Classification of summarized videos using hidden markov models on compressed chromaticity signatures

    Get PDF

    OBJECT MATCHING IN DISJOINT CAMERAS USING A COLOR TRANSFER APPROACH

    Get PDF
    Object appearance models are a consequence of illumination, viewing direction, camera intrinsics, and other conditions that are specific to a particular camera. As a result, a model acquired in one view is often inappropriate for use in other viewpoints. In this work we treat this appearance model distortion between two non-overlapping cameras as one in which some unknown color transfer function warps a known appearance model from one view to another. We demonstrate how to recover this function in the case where the distortion function is approximated as general affine and object appearance is represented as a mixture of Gaussians. Appearance models are brought into correspondence by searching for a bijection function that best minimizes an entropic metric for model dissimilarity. These correspondences lead to a solution for the transfer function that brings the parameters of the models into alignment in the UV chromaticity plane. Finally, a set of these transfer functions acquired from a collection of object pairs are generalized to a single camera-pair-specific transfer function via robust fitting. We demonstrate the method in the context of a video surveillance network and show that recognition of subjects in disjoint views can be significantly improved using the new color transfer approach

    Physics-based Shading Reconstruction for Intrinsic Image Decomposition

    Get PDF
    We investigate the use of photometric invariance and deep learning to compute intrinsic images (albedo and shading). We propose albedo and shading gradient descriptors which are derived from physics-based models. Using the descriptors, albedo transitions are masked out and an initial sparse shading map is calculated directly from the corresponding RGB image gradients in a learning-free unsupervised manner. Then, an optimization method is proposed to reconstruct the full dense shading map. Finally, we integrate the generated shading map into a novel deep learning framework to refine it and also to predict corresponding albedo image to achieve intrinsic image decomposition. By doing so, we are the first to directly address the texture and intensity ambiguity problems of the shading estimations. Large scale experiments show that our approach steered by physics-based invariant descriptors achieve superior results on MIT Intrinsics, NIR-RGB Intrinsics, Multi-Illuminant Intrinsic Images, Spectral Intrinsic Images, As Realistic As Possible, and competitive results on Intrinsic Images in the Wild datasets while achieving state-of-the-art shading estimations.Comment: Submitted to Computer Vision and Image Understanding (CVIU

    Computational strategies for understanding underwater optical image datasets

    Get PDF
    Thesis: Ph. D. in Mechanical and Oceanographic Engineering, Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Mechanical Engineering; and the Woods Hole Oceanographic Institution), 2013.Cataloged from PDF version of thesis.Includes bibliographical references (pages 117-135).A fundamental problem in autonomous underwater robotics is the high latency between the capture of image data and the time at which operators are able to gain a visual understanding of the survey environment. Typical missions can generate imagery at rates hundreds of times greater than highly compressed images can be transmitted acoustically, delaying that understanding until after the vehicle has been recovered and the data analyzed. While automated classification algorithms can lessen the burden on human annotators after a mission, most are too computationally expensive or lack the robustness to run in situ on a vehicle. Fast algorithms designed for mission-time performance could lessen the latency of understanding by producing low-bandwidth semantic maps of the survey area that can then be telemetered back to operators during a mission. This thesis presents a lightweight framework for processing imagery in real time aboard a robotic vehicle. We begin with a review of pre-processing techniques for correcting illumination and attenuation artifacts in underwater images, presenting our own approach based on multi-sensor fusion and a strong physical model. Next, we construct a novel image pyramid structure that can reduce the complexity necessary to compute features across multiple scales by an order of magnitude and recommend features which are fast to compute and invariant to underwater artifacts. Finally, we implement our framework on real underwater datasets and demonstrate how it can be used to select summary images for the purpose of creating low-bandwidth semantic maps capable of being transmitted acoustically.by Jeffrey W. Kaeli.Ph. D. in Mechanical and Oceanographic Engineerin

    Vision-Based 2D and 3D Human Activity Recognition

    Get PDF

    Object detection and activity recognition in digital image and video libraries

    Get PDF
    This thesis is a comprehensive study of object-based image and video retrieval, specifically for car and human detection and activity recognition purposes. The thesis focuses on the problem of connecting low level features to high level semantics by developing relational object and activity presentations. With the rapid growth of multimedia information in forms of digital image and video libraries, there is an increasing need for intelligent database management tools. The traditional text based query systems based on manual annotation process are impractical for today\u27s large libraries requiring an efficient information retrieval system. For this purpose, a hierarchical information retrieval system is proposed where shape, color and motion characteristics of objects of interest are captured in compressed and uncompressed domains. The proposed retrieval method provides object detection and activity recognition at different resolution levels from low complexity to low false rates. The thesis first examines extraction of low level features from images and videos using intensity, color and motion of pixels and blocks. Local consistency based on these features and geometrical characteristics of the regions is used to group object parts. The problem of managing the segmentation process is solved by a new approach that uses object based knowledge in order to group the regions according to a global consistency. A new model-based segmentation algorithm is introduced that uses a feedback from relational representation of the object. The selected unary and binary attributes are further extended for application specific algorithms. Object detection is achieved by matching the relational graphs of objects with the reference model. The major advantages of the algorithm can be summarized as improving the object extraction by reducing the dependence on the low level segmentation process and combining the boundary and region properties. The thesis then addresses the problem of object detection and activity recognition in compressed domain in order to reduce computational complexity. New algorithms for object detection and activity recognition in JPEG images and MPEG videos are developed. It is shown that significant information can be obtained from the compressed domain in order to connect to high level semantics. Since our aim is to retrieve information from images and videos compressed using standard algorithms such as JPEG and MPEG, our approach differentiates from previous compressed domain object detection techniques where the compression algorithms are governed by characteristics of object of interest to be retrieved. An algorithm is developed using the principal component analysis of MPEG motion vectors to detect the human activities; namely, walking, running, and kicking. Object detection in JPEG compressed still images and MPEG I frames is achieved by using DC-DCT coefficients of the luminance and chrominance values in the graph based object detection algorithm. The thesis finally addresses the problem of object detection in lower resolution and monochrome images. Specifically, it is demonstrated that the structural information of human silhouettes can be captured from AC-DCT coefficients

    Human motion analysis

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    • …
    corecore