37 research outputs found

    Biologically motivated keypoint detection for RGB-D data

    Get PDF
    With the emerging interest in active vision, computer vision researchers have been increasingly concerned with the mechanisms of attention. Therefore, several visual attention computational models inspired by the human visual system, have been developed, aiming at the detection of regions of interest in images. This thesis is focused on selective visual attention, which provides a mechanism for the brain to focus computational resources on an object at a time, guided by low-level image properties (Bottom-Up attention). The task of recognizing objects in different locations is achieved by focusing on different locations, one at a time. Given the computational requirements of the models proposed, the research in this area has been mainly of theoretical interest. More recently, psychologists, neurobiologists and engineers have developed cooperation's and this has resulted in considerable benefits. The first objective of this doctoral work is to bring together concepts and ideas from these different research areas, providing a study of the biological research on human visual system and a discussion of the interdisciplinary knowledge in this area, as well as the state-of-art on computational models of visual attention (bottom-up). Normally, the visual attention is referred by engineers as saliency: when people fix their look in a particular region of the image, that's because that region is salient. In this research work, saliency methods are presented based on their classification (biological plausible, computational or hybrid) and in a chronological order. A few salient structures can be used for applications like object registration, retrieval or data simplification, being possible to consider these few salient structures as keypoints when aiming at performing object recognition. Generally, object recognition algorithms use a large number of descriptors extracted in a dense set of points, which comes along with very high computational cost, preventing real-time processing. To avoid the problem of the computational complexity required, the features have to be extracted from a small set of points, usually called keypoints. The use of keypoint-based detectors allows the reduction of the processing time and the redundancy in the data. Local descriptors extracted from images have been extensively reported in the computer vision literature. Since there is a large set of keypoint detectors, this suggests the need of a comparative evaluation between them. In this way, we propose to do a description of 2D and 3D keypoint detectors, 3D descriptors and an evaluation of existing 3D keypoint detectors in a public available point cloud library with 3D real objects. The invariance of the 3D keypoint detectors was evaluated according to rotations, scale changes and translations. This evaluation reports the robustness of a particular detector for changes of point-of-view and the criteria used are the absolute and the relative repeatability rate. In our experiments, the method that achieved better repeatability rate was the ISS3D method. The analysis of the human visual system and saliency maps detectors with biological inspiration led to the idea of making an extension for a keypoint detector based on the color information in the retina. Such proposal produced a 2D keypoint detector inspired by the behavior of the early visual system. Our method is a color extension of the BIMP keypoint detector, where we include both color and intensity channels of an image: color information is included in a biological plausible way and multi-scale image features are combined into a single keypoints map. This detector is compared against state-of-art detectors and found particularly well-suited for tasks such as category and object recognition. The recognition process is performed by comparing the extracted 3D descriptors in the locations indicated by the keypoints after mapping the 2D keypoints locations to the 3D space. The evaluation allowed us to obtain the best pair keypoint detector/descriptor on a RGB-D object dataset. Using our keypoint detector and the SHOTCOLOR descriptor a good category recognition rate and object recognition rate were obtained, and it is with the PFHRGB descriptor that we obtain the best results. A 3D recognition system involves the choice of keypoint detector and descriptor. A new method for the detection of 3D keypoints on point clouds is presented and a benchmarking is performed between each pair of 3D keypoint detector and 3D descriptor to evaluate their performance on object and category recognition. These evaluations are done in a public database of real 3D objects. Our keypoint detector is inspired by the behavior and neural architecture of the primate visual system: the 3D keypoints are extracted based on a bottom-up 3D saliency map, which is a map that encodes the saliency of objects in the visual environment. The saliency map is determined by computing conspicuity maps (a combination across different modalities) of the orientation, intensity and color information, in a bottom-up and in a purely stimulusdriven manner. These three conspicuity maps are fused into a 3D saliency map and, finally, the focus of attention (or "keypoint location") is sequentially directed to the most salient points in this map. Inhibiting this location automatically allows the system to attend to the next most salient location. The main conclusions are: with a similar average number of keypoints, our 3D keypoint detector outperforms the other eight 3D keypoint detectors evaluated by achiving the best result in 32 of the evaluated metrics in the category and object recognition experiments, when the second best detector only obtained the best result in 8 of these metrics. The unique drawback is the computational time, since BIK-BUS is slower than the other detectors. Given that differences are big in terms of recognition performance, size and time requirements, the selection of the keypoint detector and descriptor has to be matched to the desired task and we give some directions to facilitate this choice. After proposing the 3D keypoint detector, the research focused on a robust detection and tracking method for 3D objects by using keypoint information in a particle filter. This method consists of three distinct steps: Segmentation, Tracking Initialization and Tracking. The segmentation is made to remove all the background information, reducing the number of points for further processing. In the initialization, we use a keypoint detector with biological inspiration. The information of the object that we want to follow is given by the extracted keypoints. The particle filter does the tracking of the keypoints, so with that we can predict where the keypoints will be in the next frame. In a recognition system, one of the problems is the computational cost of keypoint detectors with this we intend to solve this problem. The experiments with PFBIKTracking method are done indoors in an office/home environment, where personal robots are expected to operate. The Tracking Error evaluates the stability of the general tracking method. We also quantitatively evaluate this method using a "Tracking Error". Our evaluation is done by the computation of the keypoint and particle centroid. Comparing our system that the tracking method which exists in the Point Cloud Library, we archive better results, with a much smaller number of points and computational time. Our method is faster and more robust to occlusion when compared to the OpenniTracker.Com o interesse emergente na visão ativa, os investigadores de visão computacional têm estado cada vez mais preocupados com os mecanismos de atenção. Por isso, uma série de modelos computacionais de atenção visual, inspirado no sistema visual humano, têm sido desenvolvidos. Esses modelos têm como objetivo detetar regiões de interesse nas imagens. Esta tese está focada na atenção visual seletiva, que fornece um mecanismo para que o cérebro concentre os recursos computacionais num objeto de cada vez, guiado pelas propriedades de baixo nível da imagem (atenção Bottom-Up). A tarefa de reconhecimento de objetos em diferentes locais é conseguida através da concentração em diferentes locais, um de cada vez. Dados os requisitos computacionais dos modelos propostos, a investigação nesta área tem sido principalmente de interesse teórico. Mais recentemente, psicólogos, neurobiólogos e engenheiros desenvolveram cooperações e isso resultou em benefícios consideráveis. No início deste trabalho, o objetivo é reunir os conceitos e ideias a partir dessas diferentes áreas de investigação. Desta forma, é fornecido o estudo sobre a investigação da biologia do sistema visual humano e uma discussão sobre o conhecimento interdisciplinar da matéria, bem como um estado de arte dos modelos computacionais de atenção visual (bottom-up). Normalmente, a atenção visual é denominada pelos engenheiros como saliência, se as pessoas fixam o olhar numa determinada região da imagem é porque esta região é saliente. Neste trabalho de investigação, os métodos saliência são apresentados em função da sua classificação (biologicamente plausível, computacional ou híbrido) e numa ordem cronológica. Algumas estruturas salientes podem ser usadas, em vez do objeto todo, em aplicações tais como registo de objetos, recuperação ou simplificação de dados. É possível considerar estas poucas estruturas salientes como pontos-chave, com o objetivo de executar o reconhecimento de objetos. De um modo geral, os algoritmos de reconhecimento de objetos utilizam um grande número de descritores extraídos num denso conjunto de pontos. Com isso, estes têm um custo computacional muito elevado, impedindo que o processamento seja realizado em tempo real. A fim de evitar o problema da complexidade computacional requerido, as características devem ser extraídas a partir de um pequeno conjunto de pontos, geralmente chamados pontoschave. O uso de detetores de pontos-chave permite a redução do tempo de processamento e a quantidade de redundância dos dados. Os descritores locais extraídos a partir das imagens têm sido amplamente reportados na literatura de visão por computador. Uma vez que existe um grande conjunto de detetores de pontos-chave, sugere a necessidade de uma avaliação comparativa entre eles. Desta forma, propomos a fazer uma descrição dos detetores de pontos-chave 2D e 3D, dos descritores 3D e uma avaliação dos detetores de pontos-chave 3D existentes numa biblioteca de pública disponível e com objetos 3D reais. A invariância dos detetores de pontoschave 3D foi avaliada de acordo com variações nas rotações, mudanças de escala e translações. Essa avaliação retrata a robustez de um determinado detetor no que diz respeito às mudanças de ponto-de-vista e os critérios utilizados são as taxas de repetibilidade absoluta e relativa. Nas experiências realizadas, o método que apresentou melhor taxa de repetibilidade foi o método ISS3D. Com a análise do sistema visual humano e dos detetores de mapas de saliência com inspiração biológica, surgiu a ideia de se fazer uma extensão para um detetor de ponto-chave com base na informação de cor na retina. A proposta produziu um detetor de ponto-chave 2D inspirado pelo comportamento do sistema visual. O nosso método é uma extensão com base na cor do detetor de ponto-chave BIMP, onde se incluem os canais de cor e de intensidade de uma imagem. A informação de cor é incluída de forma biológica plausível e as características multi-escala da imagem são combinadas num único mapas de pontos-chave. Este detetor é comparado com os detetores de estado-da-arte e é particularmente adequado para tarefas como o reconhecimento de categorias e de objetos. O processo de reconhecimento é realizado comparando os descritores 3D extraídos nos locais indicados pelos pontos-chave. Para isso, as localizações do pontos-chave 2D têm de ser convertido para o espaço 3D. Isto foi possível porque o conjunto de dados usado contém a localização de cada ponto de no espaço 2D e 3D. A avaliação permitiu-nos obter o melhor par detetor de ponto-chave/descritor num RGB-D object dataset. Usando o nosso detetor de ponto-chave e o descritor SHOTCOLOR, obtemos uma noa taxa de reconhecimento de categorias e para o reconhecimento de objetos é com o descritor PFHRGB que obtemos os melhores resultados. Um sistema de reconhecimento 3D envolve a escolha de detetor de ponto-chave e descritor, por isso é apresentado um novo método para a deteção de pontos-chave em nuvens de pontos 3D e uma análise comparativa é realizada entre cada par de detetor de ponto-chave 3D e descritor 3D para avaliar o desempenho no reconhecimento de categorias e de objetos. Estas avaliações são feitas numa base de dados pública de objetos 3D reais. O nosso detetor de ponto-chave é inspirado no comportamento e na arquitetura neural do sistema visual dos primatas. Os pontos-chave 3D são extraídas com base num mapa de saliências 3D bottom-up, ou seja, um mapa que codifica a saliência dos objetos no ambiente visual. O mapa de saliência é determinada pelo cálculo dos mapas de conspicuidade (uma combinação entre diferentes modalidades) da orientação, intensidade e informações de cor de forma bottom-up e puramente orientada para o estímulo. Estes três mapas de conspicuidade são fundidos num mapa de saliência 3D e, finalmente, o foco de atenção (ou "localização do ponto-chave") está sequencialmente direcionado para os pontos mais salientes deste mapa. Inibir este local permite que o sistema automaticamente orientado para próximo local mais saliente. As principais conclusões são: com um número médio similar de pontos-chave, o nosso detetor de ponto-chave 3D supera os outros oito detetores de pontos-chave 3D avaliados, obtendo o melhor resultado em 32 das métricas avaliadas nas experiências do reconhecimento das categorias e dos objetos, quando o segundo melhor detetor obteve apenas o melhor resultado em 8 dessas métricas. A única desvantagem é o tempo computacional, uma vez que BIK-BUS é mais lento do que os outros detetores. Dado que existem grandes diferenças em termos de desempenho no reconhecimento, de tamanho e de tempo, a seleção do detetor de ponto-chave e descritor tem de ser interligada com a tarefa desejada e nós damos algumas orientações para facilitar esta escolha neste trabalho de investigação. Depois de propor um detetor de ponto-chave 3D, a investigação incidiu sobre um método robusto de deteção e tracking de objetos 3D usando as informações dos pontos-chave num filtro de partículas. Este método consiste em três etapas distintas: Segmentação, Inicialização do Tracking e Tracking. A segmentação é feita de modo a remover toda a informação de fundo, a fim de reduzir o número de pontos para processamento futuro. Na inicialização, usamos um detetor de ponto-chave com inspiração biológica. A informação do objeto que queremos seguir é dada pelos pontos-chave extraídos. O filtro de partículas faz o acompanhamento dos pontoschave, de modo a se poder prever onde os pontos-chave estarão no próximo frame. As experiências com método PFBIK-Tracking são feitas no interior, num ambiente de escritório/casa, onde se espera que robôs pessoais possam operar. Também avaliado quantitativamente este método utilizando um "Tracking Error". A avaliação passa pelo cálculo das centróides dos pontos-chave e das partículas. Comparando o nosso sistema com o método de tracking que existe na biblioteca usada no desenvolvimento, nós obtemos melhores resultados, com um número muito menor de pontos e custo computacional. O nosso método é mais rápido e mais robusto em termos de oclusão, quando comparado com o OpenniTracker

    Pattern Recognition

    Get PDF
    A wealth of advanced pattern recognition algorithms are emerging from the interdiscipline between technologies of effective visual features and the human-brain cognition process. Effective visual features are made possible through the rapid developments in appropriate sensor equipments, novel filter designs, and viable information processing architectures. While the understanding of human-brain cognition process broadens the way in which the computer can perform pattern recognition tasks. The present book is intended to collect representative researches around the globe focusing on low-level vision, filter design, features and image descriptors, data mining and analysis, and biologically inspired algorithms. The 27 chapters coved in this book disclose recent advances and new ideas in promoting the techniques, technology and applications of pattern recognition

    BEYOND MULTI-TARGET TRACKING: STATISTICAL PATTERN ANALYSIS OF PEOPLE AND GROUPS

    Get PDF
    Ogni giorno milioni e milioni di videocamere monitorano la vita quotidiana delle persone, registrando e collezionando una grande quantit\ue0 di dati. Questi dati possono essere molto utili per scopi di video-sorveglianza: dalla rilevazione di comportamenti anomali all'analisi del traffico urbano nelle strade. Tuttavia i dati collezionati vengono usati raramente, in quanto non \ue8 pensabile che un operatore umano riesca a esaminare manualmente e prestare attenzione a una tale quantit\ue0 di dati simultaneamente. Per questo motivo, negli ultimi anni si \ue8 verificato un incremento della richiesta di strumenti per l'analisi automatica di dati acquisiti da sistemi di video-sorveglianza in modo da estrarre informazione di pi\uf9 alto livello (per esempio, John, Sam e Anne stanno camminando in gruppo al parco giochi vicino alla stazione) a partire dai dati a disposizione che sono solitamente a basso livello e ridondati (per esempio, una sequenza di immagini). L'obiettivo principale di questa tesi \ue8 quello di proporre soluzioni e algoritmi automatici che permettono di estrarre informazione ad alto livello da una zona di interesse che viene monitorata da telecamere. Cos\uec i dati sono rappresentati in modo da essere facilmente interpretabili e analizzabili da qualsiasi persona. In particolare, questo lavoro \ue8 focalizzato sull'analisi di persone e i loro comportamenti sociali collettivi. Il titolo della tesi, beyond multi-target tracking, evidenzia lo scopo del lavoro: tutti i metodi proposti in questa tesi che si andranno ad analizzare hanno come comune denominatore il target tracking. Inoltre andremo oltre le tecniche standard per arrivare a una rappresentazione del dato a pi\uf9 alto livello. Per prima cosa, analizzeremo il problema del target tracking in quanto \ue8 alle basi di questo lavoro. In pratica, target tracking significa stimare la posizione di ogni oggetto di interesse in un immagine e la sua traiettoria nel tempo. Analizzeremo il problema da due prospettive complementari: 1) il punto di vista ingegneristico, dove l'obiettivo \ue8 quello di creare algoritmi che ottengono i risultati migliori per il problema in esame. 2) Il punto di vista della neuroscienza: motivati dalle teorie che cercano di spiegare il funzionamento del sistema percettivo umano, proporremo in modello attenzionale per tracking e il riconoscimento di oggetti e persone. Il secondo problema che andremo a esplorare sar\ue0 l'estensione del tracking alla situazione dove pi\uf9 telecamere sono disponibili. L'obiettivo \ue8 quello di mantenere un identificatore univoco per ogni persona nell'intera rete di telecamere. In altre parole, si vuole riconoscere gli individui che vengono monitorati in posizioni e telecamere diverse considerando un database di candidati. Tale problema \ue8 chiamato in letteratura re-indetificazione di persone. In questa tesi, proporremo un modello standard di come affrontare il problema. In questo modello, presenteremo dei nuovi descrittori di aspetto degli individui, in quanto giocano un ruolo importante allo scopo di ottenere i risultati migliori. Infine raggiungeremo il livello pi\uf9 alto di rappresentazione dei dati che viene affrontato in questa tesi, che \ue8 l'analisi di interazioni sociali tra persone. In particolare, ci focalizzeremo in un tipo specifico di interazione: il raggruppamento di persone. Proporremo dei metodi di visione computazionale che sfruttano nozioni di psicologia sociale per rilevare gruppi di persone. Inoltre, analizzeremo due modelli probabilistici che affrontano il problema di tracking (congiunto) di gruppi e individui.Every day millions and millions of surveillance cameras monitor the world, recording and collecting huge amount of data. The collected data can be extremely useful: from the behavior analysis to prevent unpleasant events, to the analysis of the traffic. However, these valuable data is seldom used, because of the amount of information that the human operator has to manually attend and examine. It would be like looking for a needle in the haystack. The automatic analysis of data is becoming mandatory for extracting summarized high-level information (e.g., John, Sam and Anne are walking together in group at the playground near the station) from the available redundant low-level data (e.g., an image sequence). The main goal of this thesis is to propose solutions and automatic algorithms that perform high-level analysis of a camera-monitored environment. In this way, the data are summarized in a high-level representation for a better understanding. In particular, this work is focused on the analysis of moving people and their collective behaviors. The title of the thesis, beyond multi-target tracking, mirrors the purpose of the work: we will propose methods that have the target tracking as common denominator, and go beyond the standard techniques in order to provide a high-level description of the data. First, we investigate the target tracking problem as it is the basis of all the next work. Target tracking estimates the position of each target in the image and its trajectory over time. We analyze the problem from two complementary perspectives: 1) the engineering point of view, where we deal with problem in order to obtain the best results in terms of accuracy and performance. 2) The neuroscience point of view, where we propose an attentional model for tracking and recognition of objects and people, motivated by theories of the human perceptual system. Second, target tracking is extended to the camera network case, where the goal is to keep a unique identifier for each person in the whole network, i.e., to perform person re-identification. The goal is to recognize individuals in diverse locations over different non-overlapping camera views or also the same camera, considering a large set of candidates. In this context, we propose a pipeline and appearance-based descriptors that enable us to define in a proper way the problem and to reach the-state-of-the-art results. Finally, the higher level of description investigated in this thesis is the analysis (discovery and tracking) of social interaction between people. In particular, we focus on finding small groups of people. We introduce methods that embed notions of social psychology into computer vision algorithms. Then, we extend the detection of social interaction over time, proposing novel probabilistic models that deal with (joint) individual-group tracking

    Human pose and action recognition

    Get PDF
    This thesis focuses on detection of persons and pose recognition using neural networks. The goal is to detect human body poses in a visual scene with multiple persons and to use this information in order to recognize human activity. This is achieved by rst detecting persons in a scene and then by estimating their body joints in order to infer articulated poses. The work developed in this thesis explored neural networks and deep learning methods. Deep learning allows to employ computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have greatly improved the state-of-the-art in many domains such as speech recognition and visual object detection and classi cation. Deep learning discovers intricate structure in data by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation provided by the previous one. Person detection, in general, is a di cult task due to a large variability of representation due to di erent factors such as scales, views and occlusion. An object detection framework based on multi-stage convolutional features for pedestrian detection is proposed in this thesis. This framework extends the Fast R-CNN framework for the combination of several convolutional features from di erent stages of a CNN (Convolutional Neural Network) to improve the detector's accuracy. This provides high quality detections of persons in a visual scene, which are then used as input in conjunction with a human pose estimation model in order to estimate human body joint locations of multiple persons in an image. Human pose estimation is done by a deep convolutional neural network composed of a series of residual auto-encoders. These produce multiple predictions which are later combined to provide a heatmap prediction of human body joints. In this network topology, features are processed across all scales capturing the various spatial relationships associated with the body. Repeated bottom-up and top-down processing with intermediate supervision for each auto-encoder network is applied. This results in very accurate 2D heatmaps of body joint predictions. The methods presented in this thesis were benchmarked against other topperforming methods on popular datasets for human pedestrian and pose estimation, achieving good results compared with other state-of-the-art algorithms.Esta tese foca a detec c~ao de pessoas e o reconhecimento de poses usando redes neuronais. O objectivo e detectar poses humanas num ambiente (cena) com m ultiplas pessoas e usar essa informa c~ao para reconhecer actividade humana. Isto e alcan cado ao detectar, em primeiro lugar, pessoas numa cena e, seguidamente, estimar as suas juntas corporais de modo a inferir poses articuladas. O trabalho desenvolvido nesta tese explorou m etodos de redes neuronais e de aprendizagem profunda. A aprendizagem profunda permite que modelos computacionais compostos por m ultiplas camadas de processamento aprendam representa c~oes de dados com m ultiplos n veis de abstra c~ao. Estes m etodos t^em drasticamente melhorado o estado-da-arte em muitos dom nios como o reconhecimento de fala e a classi ca c~ao e o reconhecimento de objectos visuais. A aprendizagem profunda descobre estruturas intr nsecas em conjuntos de dados ao usar algoritmos de propaga c~ao inversa (backpropagation) para indicar como uma m aquina deve alterar os seus par^ametros internos que, por sua vez, s~ao usados para processar a representa c~ao em cada camada a partir da representa c~ao da camada anterior. A detec c~ao de pessoas em geral e uma tarefa dif cil dado a grande variabilidade de representa c~oes devido a diferentes escalas, vistas e oclus~oes. Uma estrutura de detec c~ao de objectos baseada em caracter sticas convolucionais de m ultiplos est agios para a detec c~ao de pedestres e proposta nesta tese. Esta estrutura estende a estrutura Fast R-CNN com a combina c~ao de v arias caracter sticas convolucionais de diferentes est agios da CNN (Convolutional Neural Network) usada de modo a melhorar a precis~ao do detector. Isto proporciona detec c~oes de pessoas com elevada abilidade numa cena, que s~ao posteriormente conjuntamente usadas como entrada no modelo de estima c~ao de poses humanas de modo a estimar a localiza c~ao de articula c~oes humanas para a detec c~ao de m ultiplas pessoas numa imagem. A estima c~ao de poses humanas e obtido atrav es de redes neuronais convolucionais profundas que s~ao compostas por uma s erie de auto-codi cadores residuais que fornecem m ultiplas previs~oes que s~ao, posteriormente, combinadas para fornecer um \mapa de calor" de articula c~oes corporais. Nesta topologia de rede, as caracter sticas da imagem s~ao processadas ao longo de v arias escalas, capturando as v arias rela c~oes espaciais associadas com o corpo humano. Repetidos processos de baixo-para-cima e de cima-para-baixo com supervis~ao interm edia para cada autocodi cador s~ao aplicados. Isto resulta em mapas de calor 2D muito precisos de estima c~oes de articula c~oes corporais de pessoas. Os m etodos apresentados nesta tese foram comparados com outros m etodos de alto desempenho em bases de dados de detec c~ao de pessoas e de reconhecimento de poses humanas, alcan cando muito bons resultados comparando com outros algoritmos do estado-da-arte

    Real-time synthetic primate vision

    Get PDF

    Human pose and action recognition

    Get PDF
    This thesis focuses on detection of persons and pose recognition using neural networks. The goal is to detect human body poses in a visual scene with multiple persons and to use this information in order to recognize human activity. This is achieved by rst detecting persons in a scene and then by estimating their body joints in order to infer articulated poses. The work developed in this thesis explored neural networks and deep learning methods. Deep learning allows to employ computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have greatly improved the state-of-the-art in many domains such as speech recognition and visual object detection and classi cation. Deep learning discovers intricate structure in data by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation provided by the previous one. Person detection, in general, is a di cult task due to a large variability of representation due to di erent factors such as scales, views and occlusion. An object detection framework based on multi-stage convolutional features for pedestrian detection is proposed in this thesis. This framework extends the Fast R-CNN framework for the combination of several convolutional features from di erent stages of a CNN (Convolutional Neural Network) to improve the detector's accuracy. This provides high quality detections of persons in a visual scene, which are then used as input in conjunction with a human pose estimation model in order to estimate human body joint locations of multiple persons in an image. Human pose estimation is done by a deep convolutional neural network composed of a series of residual auto-encoders. These produce multiple predictions which are later combined to provide a heatmap prediction of human body joints. In this network topology, features are processed across all scales capturing the various spatial relationships associated with the body. Repeated bottom-up and top-down processing with intermediate supervision for each auto-encoder network is applied. This results in very accurate 2D heatmaps of body joint predictions. The methods presented in this thesis were benchmarked against other topperforming methods on popular datasets for human pedestrian and pose estimation, achieving good results compared with other state-of-the-art algorithms.Esta tese foca a detec c~ao de pessoas e o reconhecimento de poses usando redes neuronais. O objectivo e detectar poses humanas num ambiente (cena) com m ultiplas pessoas e usar essa informa c~ao para reconhecer actividade humana. Isto e alcan cado ao detectar, em primeiro lugar, pessoas numa cena e, seguidamente, estimar as suas juntas corporais de modo a inferir poses articuladas. O trabalho desenvolvido nesta tese explorou m etodos de redes neuronais e de aprendizagem profunda. A aprendizagem profunda permite que modelos computacionais compostos por m ultiplas camadas de processamento aprendam representa c~oes de dados com m ultiplos n veis de abstra c~ao. Estes m etodos t^em drasticamente melhorado o estado-da-arte em muitos dom nios como o reconhecimento de fala e a classi ca c~ao e o reconhecimento de objectos visuais. A aprendizagem profunda descobre estruturas intr nsecas em conjuntos de dados ao usar algoritmos de propaga c~ao inversa (backpropagation) para indicar como uma m aquina deve alterar os seus par^ametros internos que, por sua vez, s~ao usados para processar a representa c~ao em cada camada a partir da representa c~ao da camada anterior. A detec c~ao de pessoas em geral e uma tarefa dif cil dado a grande variabilidade de representa c~oes devido a diferentes escalas, vistas e oclus~oes. Uma estrutura de detec c~ao de objectos baseada em caracter sticas convolucionais de m ultiplos est agios para a detec c~ao de pedestres e proposta nesta tese. Esta estrutura estende a estrutura Fast R-CNN com a combina c~ao de v arias caracter sticas convolucionais de diferentes est agios da CNN (Convolutional Neural Network) usada de modo a melhorar a precis~ao do detector. Isto proporciona detec c~oes de pessoas com elevada abilidade numa cena, que s~ao posteriormente conjuntamente usadas como entrada no modelo de estima c~ao de poses humanas de modo a estimar a localiza c~ao de articula c~oes humanas para a detec c~ao de m ultiplas pessoas numa imagem. A estima c~ao de poses humanas e obtido atrav es de redes neuronais convolucionais profundas que s~ao compostas por uma s erie de auto-codi cadores residuais que fornecem m ultiplas previs~oes que s~ao, posteriormente, combinadas para fornecer um \mapa de calor" de articula c~oes corporais. Nesta topologia de rede, as caracter sticas da imagem s~ao processadas ao longo de v arias escalas, capturando as v arias rela c~oes espaciais associadas com o corpo humano. Repetidos processos de baixo-para-cima e de cima-para-baixo com supervis~ao interm edia para cada autocodi cador s~ao aplicados. Isto resulta em mapas de calor 2D muito precisos de estima c~oes de articula c~oes corporais de pessoas. Os m etodos apresentados nesta tese foram comparados com outros m etodos de alto desempenho em bases de dados de detec c~ao de pessoas e de reconhecimento de poses humanas, alcan cando muito bons resultados comparando com outros algoritmos do estado-da-arte

    Learning cognitive maps: Finding useful structure in an uncertain world

    Get PDF
    In this chapter we will describe the central mechanisms that influence how people learn about large-scale space. We will focus particularly on how these mechanisms enable people to effectively cope with both the uncertainty inherent in a constantly changing world and also with the high information content of natural environments. The major lessons are that humans get by with a less is more approach to building structure, and that they are able to quickly adapt to environmental changes thanks to a range of general purpose mechanisms. By looking at abstract principles, instead of concrete implementation details, it is shown that the study of human learning can provide valuable lessons for robotics. Finally, these issues are discussed in the context of an implementation on a mobile robot. © 2007 Springer-Verlag Berlin Heidelberg

    The Future of Humanoid Robots

    Get PDF
    This book provides state of the art scientific and engineering research findings and developments in the field of humanoid robotics and its applications. It is expected that humanoids will change the way we interact with machines, and will have the ability to blend perfectly into an environment already designed for humans. The book contains chapters that aim to discover the future abilities of humanoid robots by presenting a variety of integrated research in various scientific and engineering fields, such as locomotion, perception, adaptive behavior, human-robot interaction, neuroscience and machine learning. The book is designed to be accessible and practical, with an emphasis on useful information to those working in the fields of robotics, cognitive science, artificial intelligence, computational methods and other fields of science directly or indirectly related to the development and usage of future humanoid robots. The editor of the book has extensive R&D experience, patents, and publications in the area of humanoid robotics, and his experience is reflected in editing the content of the book
    corecore