123 research outputs found

    Semantik renk değiƟmezliği

    Get PDF
    Color constancy aims to perceive the actual color of an object, disregarding the effectof the light source. Recent works showed that utilizing the semantic information inan image enhances the performance of the computational color constancy methods.Considering the recent success of the segmentation methods and the increased numberof labeled images, we propose a color constancy method that combines individualilluminant estimations of detected objects which are computed using the classes of theobjects and their associated colors. Then we introduce a weighting system that valuesthe applicability of the object classes to the color constancy problem. Lastly, weintroduce another metric expressing the detected object and how well it fits the learnedmodel of its class. Finally, we evaluate our proposed method on a popular colorconstancy dataset, confirming that each weight addition enhances the performanceof the global illuminant estimation. Experimental results show promising results,outperforming the conventional methods while competing with the state of the artmethods.--M.S. - Master of Scienc

    Does colour constancy exist?

    Get PDF
    For a stable visual world, the colours of objects should appear the same under different lights. This property of colour constancy has been assumed to be fundamental to vision, and many experimental attempts have been made to quantify it. I contend here, however, that the usual methods of measurement are either too coarse or concentrate not on colour constancy itself, but on other, complementary aspects of scene perception. Whether colour constancy exists other than in nominal terms remains unclear

    The science of color and color vision

    Get PDF
    A survey of color science and color vision

    Empirical evidence for unique hues?

    Get PDF
    Red, green, blue, yellow, and white have been distinguished from other hues as unique. We present results from two experiments that undermine existing behavioral evidence to separate the unique hues from other colors. In Experiment 1 we used hue scaling, which has often been used to support the existence of unique hues, but has never been attempted with a set of non-unique primaries. Subjects were assigned to one of two experimental conditions. In the "unique" condition, they rated the proportions of red, yellow, blue, and green that they perceived in each of a series of test stimuli. In the "intermediate" condition, they rated the proportions of teal, purple, orange, and lime. We found, surprisingly, that results from the two conditions were largely equivalent. In Experiment 2, we investigated the effect of instruction on subjects' settings of unique hues. We found that altering the color terms given in the instructions to include intermediate hues led to significant shifts in the hue that subjects identified as unique. The results of both experiments question subjects' abilities to identify certain hues as unique

    Red, yellow, green and blue are not particularly colorful

    Get PDF
    Colorfulness and saturation have been neglected in research on color appearance and color naming. Perceptual particularities, such as cross-cultural stability, “focality”, “uniqueness”, “salience” and “prominence” have been observed for red, yellow, green, and blue, when those colors were more saturated than other colors in the stimulus samples. The present study tests whether high saturation is a particular property of red, yellow, green and blue, which would explain those observations. First, we carefully determined the category prototypes and unique hues for red, yellow, green, and blue. Using different approaches in two experiments, we assessed discriminable saturation as the number of just-noticeable differences away from the adaptation point (i.e. neutral gray). Results show that some hues can reach much higher levels of maximal saturation than others. However, typical and unique red, yellow, green, and blue are not particularly colorful. Many other, intermediate colors have a larger range of discriminable saturation than these colors. These findings suggest that prior claims of perceptual salience of category prototypes and unique hues actually reflect biases in stimulus sets rather than perceptual properties. Additional analyses show that consistent prototype choices across fundamentally different languages are strongly related to the variation of discriminable saturation in the stimulus sets. Our findings also undermine the idea that every color can be produced by a mixture of unique hues. Finally, the measurements in this study provide a large amount of data on saturation across hues, which allows for reevaluating existing estimates of saturation in future studies

    The Constructive Nature of Color Vision and Its Neural Basis

    Get PDF
    Our visual world is made up of colored surfaces. The color of a surface is physically determined by its reflectance, i.e., how much energy it reflects as a function of wavelength. Reflected light, however, provides only ambiguous information about the color of a surface as it depends on the spectral properties of both the surface and the illumination. Despite the confounding effects of illumination on the reflected light, the visual system is remarkably good at inferring the reflectance of a surface, enabling observers to perceive surface colors as stable across illumination changes. This capacity of the visual system is called color constancy and it highlights that color vision is a constructive process. The research presented here investigates the neural basis of some of the most relevant aspects of the constructive nature of human color vision using machine learning algorithms and functional neuroimaging. The experiments demonstrate that color-related prior knowledge influences neural signals already in the earliest area of visual processing in the cortex, area V1, whereas in object imagery, perceived color shared neural representations with the color of the imagined objects in human V4. A direct test for illumination-invariant surface color representation showed that neural coding in V1 as well as a region anterior to human V4 was robust against illumination changes. In sum, the present research shows how different aspects of the constructive nature of color vision can be mapped to different regions in the ventral visual pathway

    Does colour constancy exist?

    Get PDF

    Determinants of colour constancy

    Get PDF
    Colour constancy describes the ability of our visual system to keep colour percepts stable through illumination changes. This is an outstanding feat given that in the retinal image surface and illuminant properties are conflated. Still, in our everyday lives we are able attribute stable colour-labels to objects to make communication economic and efficient. Past research shows colour constancy to be imperfect, compensating for 40% and 80% of the illumination change. While different constancy determinants are suggested, no carefully controlled study shows perfect constancy. The first study presented here addresses the issue of imperfect constancy by investigating colour constancy in a cue rich environment, using a task that resembles our everyday experience with colours. Participants were asked to recall the colour of unique personal objects in natural environment under four chromatic illuminations. This approach yielded perfect colour constancy. The second study investigated the relation between illumination discrimination and chromatic detection. Recent studies using an illumination discrimination paradigm suggest that colour constancy is optimized for bluish daylight illuminations. Because it is not clear if illumination discrimination is directly related to colour constancy or is instead explained by sensitivity to changes in chromaticity of different hues, thresholds for illumination discrimination and chromatic detection for the same 12 illumination hues were compared. While the reported blue bias could be replicated, thresholds for illumination discrimination and chromatic detection were highly related, indicating that lower sensibility towards bluish hues is not exclusive to illumination discrimination. Accompanying the second study, the third study investigated the distribution of colour constancy for 40 chromatic illuminations of different hue using achromatic adjustments and colour naming. These measurements were compared to several determinants of colour constancy, including the daylight locus, colour categories, illumination discrimination, chromatic detection, relational colour constancy and metameric mismatching. In accordance with the observations in study 2, achromatic adjustments revealed a bias towards bluish daylight illumination. This blue bias and naming consistency explained most of the variance in achromatic adjustments, while illumination discrimination was not directly related to colour constancy. The fourth study examined colour memory biases. Past research shows that colours of objects are remembered as being more saturated than they are perceived. These works often used natural objects that exist in a variety of colour and hue, such as grass or bananas. The approach presented here directly compared perceived and memorized colours for unique objects, used also in the first study, and confirmed the previous findings that on average, objects were remembered more saturated than they were perceived.Farbkonstanz beschreibt die FĂ€higkeit unseres visuellen Systems FarbeindrĂŒcke unter BeleuchtungsĂ€nderungen bestĂ€ndig zu halten. Dies ist eine außergewöhnliche Leistung, wenn man in Betracht zieht, dass in dem Lichtsignal welches das Auge erreicht Eigenschaften der Beleuchtung und der OberflĂ€chen konfundiert sind. Trotz dieser Problematik sind wir in unserem alltĂ€glichen Leben in der Lage Objekten stabile Farbnamen zuzuordnen, und damit unsere Kommunikation effizient und ökonomisch zu gestalten. Bisherige Studien zur Farbkonstanz berichten jedoch, dass Farbkonstanz nicht perfekt ist, Beleuchtungswechsel wurden nur zwischen 40-80% kompensiert. WĂ€hrend unterschiedliche Determinanten der Farbkonstanz vorgeschlagen wurden, konnte bisher keine sorgfĂ€ltig kontrollierte Studie perfekte Farbkonstanz zeigen. In der ersten Studie dieser Arbeit wurde dieser Aspekt untersucht, indem Farbkonstanz in einer hinweisreichen Umgebung unter Verwendung einer Aufgabe, die möglichst prĂ€zise unserer alltĂ€glichen Erfahrung im Umgang mit Farben wiederspiegelt, gemessen wurde. Die Versuchsteilnehmer wurden aufgefordert die Farbe eines spezifischen persönlichen Gegenstandes unter vier farbigen Beleuchtungen aus dem GedĂ€chtnis abzurufen. Unter Verwendung dieses Ansatzes konnte perfekte Farbkonstanz erreicht werden. Die zweite Studie untersuchte die Beziehung zwischen Beleuchtungs-Diskrimination und chromatischer Detektion. Die Ergebnisse von kĂŒrzlich veröffentlichten Forschungsarbeiten, welche ein Beleuchtungs-Diskriminations-Paradigma verwendeten, zeigen das diese Diskrimination in Richtung blĂ€ulicher Beleuchtung verzerrt ist. Daraus wurde geschlossen, das Farbkonstanz fĂŒr blĂ€uliche Tageslicht-Beleuchtungen optimiert ist . Da es aber nicht klar ist, ob Beleuchtungs-Diskrimination in direkter Beziehung zur Farbkonstanz steht, oder aber vielmehr auf die SensitivitĂ€t fĂŒr chromatische VerĂ€nderungen zurĂŒckfĂŒhren ist, wurden Wahrnehmungsschwellen fĂŒr Beleuchtungs-Diskrimination und chromatische Detektion fĂŒr die selben 12 Beleuchtungsfarben gemessen und verglichen. WĂ€hrend die bereits berichtete Verzerrung in Richtung der blĂ€ulichen Tageslichtbeleuchtung repliziert werden konnte, wurde ebenfalls eine hoher Zusammenhang zwischen chromatischer Detektion und Beleuchtungs-Diskrimination gefunden, welcher darauf hinweist, dass die Verzerrung in Richtung blĂ€ulicher Farben keine exklusive Eigenschaft der Beleuchtung-Diskrimination ist. AnknĂŒpfend an die zweite Studie wurde in der dritten Studie die Verteilung von Farbkonstanz ĂŒber 40 chromatische Beleuchtungen anhand von achromatischen Einstellungen und Farbbenennung untersucht. Farbkonstanz wurde auf ihren Zusammenhang zu mehreren Determinanten der Farbkonstanz ĂŒberprĂŒft, unter anderem mit Tageslichtvariationen, Farbkategorien, Beleuchtungs-Diskrimination, relationaler Farbkonstanz und metameric mismatching. In Übereinstimmung mit der zweiten Studie wurde auch fĂŒr achromatische Einstellungen eine Verzerrung in Richtung blĂ€ulicher Tageslichtbeleuchtungen gefunden. Diese Verzerrung und der Konsensus der Beleuchtungsbenennung erklĂ€rten den Großteil der Varianz der achromatischen Einstellungen, wĂ€hrend Beleuchtungs-Diskrimination nicht in direkter Verbindung zur Farbkonstanz stand. In der vierten Studie wurden Verzerrungen des FarbgedĂ€chtnisses untersucht. FrĂŒhere Studien berichten, dass Objektfarben hĂ€ufig gesĂ€ttigter erinnert werden als sie tatsĂ€chlich wahrgenommen werden. In diesen Studien wurden hĂ€ufig natĂŒrliche Objekte verwendet, die in einer Vielzahl an Farbtönen und SĂ€ttigungen existieren, wie beispielsweise Gras oder Bananen. In dem hier prĂ€sentierten Ansatz wurden Farbwahlen aus dem GedĂ€chtnis mit Farbwahlen der direkten Objektwahrnehmung fĂŒr persönliche, spezifische Objekte, die auch schon in der ersten Studie verwendet wurden, verglichen. Die Ergebnisse der vorherigen Studien konnten fĂŒr diese Objekte repliziert werden: Im Durchschnitt wurden Objektfarben gesĂ€ttigter erinnert als das Objekt im direkten Vergleich wahrgenommen wurde

    Spectrally Based Material Color Equivalency: Modeling and Manipulation

    Get PDF
    A spectrally based normalization methodology (Wpt normalization) for linearly transforming cone excitations or sensor values (sensor excitations) to a representation that preserves the perceptive concepts of lightness, chroma and hue is proposed resulting in a color space with the axes labeled W , p, t. Wpt (pronounced “Waypoint ) has been demonstrated to be an effective material color equivalency space that provides the basis for defining Material Adjustment Transforms that predict the changes in sensor excitations of material spectral reflectance colors due to variations in observer or illuminant. This is contrasted with Chromatic Adaptation Transforms that predict color appearance as defined by corresponding color experiments. Material color equivalency as provided by Wpt and Wpt normalization forms the underlying foundation of this doctoral research. A perceptually uniform material color equivalency space (“Waypoint Lab or WLab) was developed that represents a non-linear transformation of Wpt coordinates, and Euclidean WLab distances were found to not be statistically different from ∆E⋆94 and ∆E00 color differences. Sets of Wpt coordinates for variations in reflectance, illumination, or observers were used to form the basis of defining Wpt shift manifolds. WLab distances of corresponding points within or between these manifolds were utilized to define metrics for color inconstancy, metamerism, observer rendering, illuminant rendering, and differences in observing conditions. Spectral estimation and manipulation strategies are presented that preserve various aspects of “Wpt shift potential as represented by changes in Wpt shift manifolds. Two methods were explored for estimating Wpt normalization matrices based upon direct utilization of sensor excitations, and the use of a Wpt based Material Adjustment Transform to convert Cone Fundamentals to ”XYZ-like Color Matching Functions was investigated and contrasted with other methods such as direct regression and prediction of a common color matching primaries. Finally, linear relationships between Wpt and spectral reflectances were utilized to develop approaches for spectral estimation and spectral manipulation within a general spectral reflectance manipulation framework – thus providing the ability to define and achieve “spectrally preferred color rendering objectives. The presented methods of spectral estimation, spectral manipulation, and material adjustment where utilized to: define spectral reflectances for Munsell colors that minimize Wpt shift potential; manipulate spectral reflectances of actual printed characterization data sets to achieve colorimetry of reference printing conditions; and lastly to demonstrate the spectral estimation and manipulation of spectral reflectances using images and spectrally based profiles within an iccMAX color management workflow
    • 

    corecore