1,602 research outputs found

    Illumina error correction near highly repetitive DNA regions improves de novo genome assembly

    Get PDF
    BACKGROUND : Several standalone error correction tools have been proposed to correct sequencing errors in Illumina data in order to facilitate de novo genome assembly. However, in a recent survey, we showed that state-of-the-art assemblers often did not benefit from this pre-correction step. We found that many error correction tools introduce new errors in reads that overlap highly repetitive DNA regions such as low-complexity patterns or short homopolymers, ultimately leading to a more fragmented assembly. RESULTS : We propose BrownieCorrector, an error correction tool for Illumina sequencing data that focuses on the correction of only those reads that overlap short DNA patterns that are highly repetitive in the genome. BrownieCorrector extracts all reads that contain such a pattern and clusters them into different groups using a community detection algorithm that takes into account both the sequence similarity between overlapping reads and their respective paired-end reads. Each cluster holds reads that originate from the same genomic region and hence each cluster can be corrected individually, thus providing a consistent correction for all reads within that cluster. CONCLUSIONS : BrownieCorrector is benchmarked using six real Illumina datasets for different eukaryotic genomes. The prior use of BrownieCorrector improves assembly results over the use of uncorrected reads in all cases. In comparison with other error correction tools, BrownieCorrector leads to the best assembly results in most cases even though less than 2% of the reads within a dataset are corrected. Additionally, we investigate the impact of error correction on hybrid assembly where the corrected Illumina reads are supplemented with PacBio data. Our results confirm that BrownieCorrector improves the quality of hybrid genome assembly as well. BrownieCorrector is written in standard C++11 and released under GPL license. BrownieCorrector relies on multithreading to take advantage of multi-core/multi-CPU systems. The source code is available at https://github.com/biointec/browniecorrector.The Research Foundation - Flanders (FWO) (G0C3914N). Computational resources and services were provided by the Flemish Supercomputer Center, funded by Ghent University, the Hercules Foundation and the Flemish Government – EWIhttps://bmcbioinformatics.biomedcentral.comam2020Genetic

    Illumina mate-paired DNA sequencing-library preparation using Cre-Lox recombination

    Get PDF
    Standard Illumina mate-paired libraries are constructed from 3- to 5-kb DNA fragments by a blunt-end circularization. Sequencing reads that pass through the junction of the two joined ends of a 3-5-kb DNA fragment are not easy to identify and pose problems during mapping and de novo assembly. Longer read lengths increase the possibility that a read will cross the junction. To solve this problem, we developed a mate-paired protocol for use with Illumina sequencing technology that uses Cre-Lox recombination instead of blunt end circularization. In this method, a LoxP sequence is incorporated at the junction site. This sequence allows screening reads for junctions without using a reference genome. Junction reads can be trimmed or split at the junction. Moreover, the location of the LoxP sequence in the reads distinguishes mate-paired reads from spurious paired-end reads. We tested this new method by preparing and sequencing a mate-paired library with an insert size of 3 kb from Saccharomyces cerevisiae. We present an analysis of the library quality statistics and a new bio-informatics tool called DeLoxer that can be used to analyze an IlluminaCre-Lox mate-paired data set. We also demonstrate how the resulting data significantly improves a de novo assembly of the S. cerevisiae genome

    Rapid de novo assembly of the European eel genome from nanopore sequencing reads

    Get PDF
    publishedVersio

    High Performance Computing for DNA Sequence Alignment and Assembly

    Get PDF
    Recent advances in DNA sequencing technology have dramatically increased the scale and scope of DNA sequencing. These data are used for a wide variety of important biological analyzes, including genome sequencing, comparative genomics, transcriptome analysis, and personalized medicine but are complicated by the volume and complexity of the data involved. Given the massive size of these datasets, computational biology must draw on the advances of high performance computing. Two fundamental computations in computational biology are read alignment and genome assembly. Read alignment maps short DNA sequences to a reference genome to discover conserved and polymorphic regions of the genome. Genome assembly computes the sequence of a genome from many short DNA sequences. Both computations benefit from recent advances in high performance computing to efficiently process the huge datasets involved, including using highly parallel graphics processing units (GPUs) as high performance desktop processors, and using the MapReduce framework coupled with cloud computing to parallelize computation to large compute grids. This dissertation demonstrates how these technologies can be used to accelerate these computations by orders of magnitude, and have the potential to make otherwise infeasible computations practical

    Improving Illumina assemblies with Hi-C and long reads : An example with the North African dromedary

    Get PDF
    Researchers have assembled thousands of eukaryotic genomes using Illumina reads, but traditional mate-pair libraries cannot span all repetitive elements, resulting in highly fragmented assemblies. However, both chromosome conformation capture techniques, such as Hi-C and Dovetail Genomics Chicago libraries and long-read sequencing, such as Pacific Biosciences and Oxford Nanopore, help span and resolve repetitive regions and therefore improve genome assemblies. One important livestock species of arid regions that does not have a high-quality contiguous reference genome is the dromedary (Camelus dromedarius). Draft genomes exist but are highly fragmented, and a high-quality reference genome is needed to understand adaptation to desert environments and artificial selection during domestication. Dromedaries are among the last livestock species to have been domesticated, and together with wild and domestic Bactrian camels, they are the only representatives of the Camelini tribe, which highlights their evolutionary significance. Here we describe our efforts to improve the North African dromedary genome. We used Chicago and Hi-C sequencing libraries from Dovetail Genomics to resolve the order of previously assembled contigs, producing almost chromosome-level scaffolds. Remaining gaps were filled with Pacific Biosciences long reads, and then scaffolds were comparatively mapped to chromosomes. Long reads added 99.32 Mbp to the total length of the new assembly. Dovetail Chicago and Hi-C libraries increased the longest scaffold over 12-fold, from 9.71 Mbp to 124.99 Mbp and the scaffold N50 over 50-fold, from 1.48 Mbp to 75.02 Mbp. We demonstrate that Illumina de novo assemblies can be substantially upgraded by combining chromosome conformation capture and long-read sequencing.Peer reviewe

    Comparative Genomic Characterization of the Multimammate Mouse Mastomys coucha.

    Get PDF
    Mastomys are the most widespread African rodent and carriers of various diseases such as the plague or Lassa virus. In addition, mastomys have rapidly gained a large number of mammary glands. Here, we generated a genome, variome, and transcriptomes for Mastomys coucha. As mastomys diverged at similar times from mouse and rat, we demonstrate their utility as a comparative genomic tool for these commonly used animal models. Furthermore, we identified over 500 mastomys accelerated regions, often residing near important mammary developmental genes or within their exons leading to protein sequence changes. Functional characterization of a noncoding mastomys accelerated region, located in the HoxD locus, showed enhancer activity in mouse developing mammary glands. Combined, our results provide genomic resources for mastomys and highlight their potential both as a comparative genomic tool and for the identification of mammary gland number determining factors
    corecore