13,382 research outputs found

    Secure Identification in Social Wireless Networks

    Get PDF
    The applications based on social networking have brought revolution towards social life and are continuously gaining popularity among the Internet users. Due to the advanced computational resources offered by the innovative hardware and nominal subscriber charges of network operators, most of the online social networks are transforming into the mobile domain by offering exciting applications and games exclusively designed for users on the go. Moreover, the mobile devices are considered more personal as compared to their desktop rivals, so there is a tendency among the mobile users to store sensitive data like contacts, passwords, bank account details, updated calendar entries with key dates and personal notes on their devices. The Project Social Wireless Network Secure Identification (SWIN) is carried out at Swedish Institute of Computer Science (SICS) to explore the practicality of providing the secure mobile social networking portal with advanced security features to tackle potential security threats by extending the existing methods with more innovative security technologies. In addition to the extensive background study and the determination of marketable use-cases with their corresponding security requirements, this thesis proposes a secure identification design to satisfy the security dimensions for both online and offline peers. We have implemented an initial prototype using PHP Socket and OpenSSL library to simulate the secure identification procedure based on the proposed design. The design is in compliance with 3GPP‟s Generic Authentication Architecture (GAA) and our implementation has demonstrated the flexibility of the solution to be applied independently for the applications requiring secure identification. Finally, the thesis provides strong foundation for the advanced implementation on mobile platform in future

    A Fair and Secure Cluster Formation Process for Ad Hoc Networks

    Get PDF
    An efficient approach for organizing large ad hoc networks is to divide the nodes into multiple clusters and designate, for each cluster, a clusterhead which is responsible for holding intercluster control information. The role of a clusterhead entails rights and duties. On the one hand, it has a dominant position in front of the others because it manages the connectivity and has access to other nodeÂżs sensitive information. But on the other hand, the clusterhead role also has some associated costs. Hence, in order to prevent malicious nodes from taking control of the group in a fraudulent way and avoid selfish attacks from suitable nodes, the clusterhead needs to be elected in a secure way. In this paper we present a novel solution that guarantees the clusterhead is elected in a cheat-proof manner

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    Security Analysis of Vehicular Ad Hoc Networks (VANET)

    Full text link
    Vehicular Ad Hoc Networks (VANET) has mostly gained the attention of today's research efforts, while current solutions to achieve secure VANET, to protect the network from adversary and attacks still not enough, trying to reach a satisfactory level, for the driver and manufacturer to achieve safety of life and infotainment. The need for a robust VANET networks is strongly dependent on their security and privacy features, which will be discussed in this paper. In this paper a various types of security problems and challenges of VANET been analyzed and discussed; we also discuss a set of solutions presented to solve these challenges and problems.Comment: 6 pages; 2010 Second International Conference on Network Applications, Protocols and Service

    A robust self-organized public key management for mobile ad hoc networks

    Get PDF
    A mobile ad hoc network (MANET) is a self-organized wireless network where mobile nodes can communicate with each other without the use of any existing network infrastructure or centralized administration. Trust establishment and management are essential for any security framework of MANETs. However, traditional solutions to key management through accessing trusted authorities or centralized servers are infeasible for MANETs due to the absence of infrastructure, frequent mobility, and wireless link instability. In this paper, we propose a robust self-organized, public key management for MANETs. The proposed scheme relies on establishing a small number of trust relations between neighboring nodes during the network initialization phase. Experiences gained as a result of successful communications and node mobility through the network enhance the formation of a web of trust between mobile nodes. The proposed scheme allows each user to create its public key and the corresponding private key, to issue certificates to neighboring nodes, and to perform public key authentication through at least two independent certificate chains without relying on any centralized authority. A measure of the communications cost of the key distribution process has been proposed. Simulation results show that the proposed scheme is robust and efficient in the mobility environment of MANET and against malicious node attacks

    Security in Pervasive Computing: Current Status and Open Issues

    Get PDF
    Million of wireless device users are ever on the move, becoming more dependent on their PDAs, smart phones, and other handheld devices. With the advancement of pervasive computing, new and unique capabilities are available to aid mobile societies. The wireless nature of these devices has fostered a new era of mobility. Thousands of pervasive devices are able to arbitrarily join and leave a network, creating a nomadic environment known as a pervasive ad hoc network. However, mobile devices have vulnerabilities, and some are proving to be challenging. Security in pervasive computing is the most critical challenge. Security is needed to ensure exact and accurate confidentiality, integrity, authentication, and access control, to name a few. Security for mobile devices, though still in its infancy, has drawn the attention of various researchers. As pervasive devices become incorporated in our day-to-day lives, security will increasingly becoming a common concern for all users - - though for most it will be an afterthought, like many other computing functions. The usability and expansion of pervasive computing applications depends greatly on the security and reliability provided by the applications. At this critical juncture, security research is growing. This paper examines the recent trends and forward thinking investigation in several fields of security, along with a brief history of previous accomplishments in the corresponding areas. Some open issues have been discussed for further investigation

    SECMACE: Scalable and Robust Identity and Credential Management Infrastructure in Vehicular Communication Systems

    Full text link
    Several years of academic and industrial research efforts have converged to a common understanding on fundamental security building blocks for the upcoming Vehicular Communication (VC) systems. There is a growing consensus towards deploying a special-purpose identity and credential management infrastructure, i.e., a Vehicular Public-Key Infrastructure (VPKI), enabling pseudonymous authentication, with standardization efforts towards that direction. In spite of the progress made by standardization bodies (IEEE 1609.2 and ETSI) and harmonization efforts (Car2Car Communication Consortium (C2C-CC)), significant questions remain unanswered towards deploying a VPKI. Deep understanding of the VPKI, a central building block of secure and privacy-preserving VC systems, is still lacking. This paper contributes to the closing of this gap. We present SECMACE, a VPKI system, which is compatible with the IEEE 1609.2 and ETSI standards specifications. We provide a detailed description of our state-of-the-art VPKI that improves upon existing proposals in terms of security and privacy protection, and efficiency. SECMACE facilitates multi-domain operations in the VC systems and enhances user privacy, notably preventing linking pseudonyms based on timing information and offering increased protection even against honest-but-curious VPKI entities. We propose multiple policies for the vehicle-VPKI interactions, based on which and two large-scale mobility trace datasets, we evaluate the full-blown implementation of SECMACE. With very little attention on the VPKI performance thus far, our results reveal that modest computing resources can support a large area of vehicles with very low delays and the most promising policy in terms of privacy protection can be supported with moderate overhead.Comment: 14 pages, 9 figures, 10 tables, IEEE Transactions on Intelligent Transportation System
    • …
    corecore