1,656 research outputs found

    On Identity Tests for High Dimensional Data Using RMT

    Full text link
    In this work, we redefined two important statistics, the CLRT test (Bai et.al., Ann. Stat. 37 (2009) 3822-3840) and the LW test (Ledoit and Wolf, Ann. Stat. 30 (2002) 1081-1102) on identity tests for high dimensional data using random matrix theories. Compared with existing CLRT and LW tests, the new tests can accommodate data which has unknown means and non-Gaussian distributions. Simulations demonstrate that the new tests have good properties in terms of size and power. What is more, even for Gaussian data, our new tests perform favorably in comparison to existing tests. Finally, we find the CLRT is more sensitive to eigenvalues less than 1 while the LW test has more advantages in relation to detecting eigenvalues larger than 1.Comment: 16 pages, 2 figures, 3 tables, To be published in the Journal of Multivariate Analysi

    Testing linear hypotheses in high-dimensional regressions

    Full text link
    For a multivariate linear model, Wilk's likelihood ratio test (LRT) constitutes one of the cornerstone tools. However, the computation of its quantiles under the null or the alternative requires complex analytic approximations and more importantly, these distributional approximations are feasible only for moderate dimension of the dependent variable, say p≤20p\le 20. On the other hand, assuming that the data dimension pp as well as the number qq of regression variables are fixed while the sample size nn grows, several asymptotic approximations are proposed in the literature for Wilk's \bLa including the widely used chi-square approximation. In this paper, we consider necessary modifications to Wilk's test in a high-dimensional context, specifically assuming a high data dimension pp and a large sample size nn. Based on recent random matrix theory, the correction we propose to Wilk's test is asymptotically Gaussian under the null and simulations demonstrate that the corrected LRT has very satisfactory size and power, surely in the large pp and large nn context, but also for moderately large data dimensions like p=30p=30 or p=50p=50. As a byproduct, we give a reason explaining why the standard chi-square approximation fails for high-dimensional data. We also introduce a new procedure for the classical multiple sample significance test in MANOVA which is valid for high-dimensional data.Comment: Accepted 02/2012 for publication in "Statistics". 20 pages, 2 pages and 2 table

    Financial Applications of Random Matrix Theory: a short review

    Get PDF
    We discuss the applications of Random Matrix Theory in the context of financial markets and econometric models, a topic about which a considerable number of papers have been devoted to in the last decade. This mini-review is intended to guide the reader through various theoretical results (the Marcenko-Pastur spectrum and its various generalisations, random SVD, free matrices, largest eigenvalue statistics, etc.) as well as some concrete applications to portfolio optimisation and out-of-sample risk estimation.Comment: To appear in the "Handbook on Random Matrix Theory", Oxford University Pres
    • …
    corecore