24 research outputs found

    Deterministic Black-Box Identity Testing π\pi-Ordered Algebraic Branching Programs

    Get PDF
    In this paper we study algebraic branching programs (ABPs) with restrictions on the order and the number of reads of variables in the program. Given a permutation π\pi of nn variables, for a π\pi-ordered ABP (π\pi-OABP), for any directed path pp from source to sink, a variable can appear at most once on pp, and the order in which variables appear on pp must respect π\pi. An ABP AA is said to be of read rr, if any variable appears at most rr times in AA. Our main result pertains to the identity testing problem. Over any field FF and in the black-box model, i.e. given only query access to the polynomial, we have the following result: read rr π\pi-OABP computable polynomials can be tested in \DTIME[2^{O(r\log r \cdot \log^2 n \log\log n)}]. Our next set of results investigates the computational limitations of OABPs. It is shown that any OABP computing the determinant or permanent requires size Ω(2n/n)\Omega(2^n/n) and read Ω(2n/n2)\Omega(2^n/n^2). We give a multilinear polynomial pp in 2n+12n+1 variables over some specifically selected field GG, such that any OABP computing pp must read some variable at least 2n2^n times. We show that the elementary symmetric polynomial of degree rr in nn variables can be computed by a size O(rn)O(rn) read rr OABP, but not by a read (r−1)(r-1) OABP, for any 0<2r−1≤n0 < 2r-1 \leq n. Finally, we give an example of a polynomial pp and two variables orders π≠π′\pi \neq \pi', such that pp can be computed by a read-once π\pi-OABP, but where any π′\pi'-OABP computing pp must read some variable at least $2^n

    Quasipolynomial Hitting Sets for Circuits with Restricted Parse Trees

    Get PDF
    We study the class of non-commutative Unambiguous circuits or Unique-Parse-Tree (UPT) circuits, and a related model of Few-Parse-Trees (FewPT) circuits (which were recently introduced by Lagarde, Malod and Perifel [Guillaume Lagarde et al., 2016] and Lagarde, Limaye and Srinivasan [Guillaume Lagarde et al., 2017]) and give the following constructions: - An explicit hitting set of quasipolynomial size for UPT circuits, - An explicit hitting set of quasipolynomial size for FewPT circuits (circuits with constantly many parse tree shapes), - An explicit hitting set of polynomial size for UPT circuits (of known parse tree shape), when a parameter of preimage-width is bounded by a constant. The above three results are extensions of the results of [Manindra Agrawal et al., 2015], [Rohit Gurjar et al., 2015] and [Rohit Gurjar et al., 2016] to the setting of UPT circuits, and hence also generalize their results in the commutative world from read-once oblivious algebraic branching programs (ROABPs) to UPT-set-multilinear circuits. The main idea is to study shufflings of non-commutative polynomials, which can then be used to prove suitable depth reduction results for UPT circuits and thereby allow a careful translation of the ideas in [Manindra Agrawal et al., 2015], [Rohit Gurjar et al., 2015] and [Rohit Gurjar et al., 2016]

    Black-Box Identity Testing of Noncommutative Rational Formulas of Inversion Height Two in Deterministic Quasipolynomial Time

    Get PDF
    Hrube\v{s} and Wigderson (2015) initiated the complexity-theoretic study of noncommutative formulas with inverse gates. They introduced the Rational Identity Testing (RIT) problem which is to decide whether a noncommutative rational formula computes zero in the free skew field. In the white-box setting, deterministic polynomial-time algorithms are known for this problem following the works of Garg, Gurvits, Oliveira, and Wigderson (2016) and Ivanyos, Qiao, and Subrahmanyam (2018). A central open problem in this area is to design efficient deterministic black-box identity testing algorithm for rational formulas. In this paper, we solve this problem for the first nested inverse case. More precisely, we obtain a deterministic quasipolynomial-time black-box RIT algorithm for noncommutative rational formulas of inversion height two via a hitting set construction. Several new technical ideas are involved in the hitting set construction, including key concepts from matrix coefficient realization theory (Vol\v{c}i\v{c}, 2018) and properties of cyclic division algebra (Lam, 2001). En route to the proof, an important step is to embed the hitting set of Forbes and Shpilka for noncommutative formulas (2013) inside a cyclic division algebra of small index
    corecore