1,134 research outputs found

    Prediction Techniques in Internet of Things (IoT) Environment: A Comparative Study

    Get PDF
    Socialization and Personalization in Internet of Things (IOT) environment are the current trends in computing research. Most of the research work stresses the importance of predicting the service & providing socialized and personalized services. This paper presents a survey report on different techniques used for predicting user intention in wide variety of IOT based applications like smart mobile, smart television, web mining, weather forecasting, health-care/medical, robotics, road-traffic, educational data mining, natural calamities, retail banking, e-commerce, wireless networks & social networking. As per the survey made the prediction techniques are used for: predicting the application that can be accessed by the mobile user, predicting the next page to be accessed by web user, predicting the users favorite TV program, predicting user navigational patterns and usage needs on websites & also to extract the users browsing behavior, predicting future climate conditions, predicting whether a patient is suffering from a disease, predicting user intention to make implicit and human-like interactions possible by accepting implicit commands, predicting the amount of traffic occurring at a particular location, predicting student performance in schools & colleges, predicting & estimating the frequency of natural calamities occurrences like floods, earthquakes over a long period of time & also to take precautionary measures, predicting & detecting false user trying to make transaction in the name of genuine user, predicting the actions performed by the user to improve the business, predicting & detecting the intruder acting in the network, predicting the mood transition information of the user by using context history, etc. This paper also discusses different techniques like Decision Tree algorithm, Artificial Intelligence and Data Mining based Machine learning techniques, Content and Collaborative based Recommender algorithms used for prediction

    Multimedia question answering

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Detecting, Modeling, and Predicting User Temporal Intention

    Get PDF
    The content of social media has grown exponentially in the recent years and its role has evolved from narrating life events to actually shaping them. Unfortunately, content posted and shared in social networks is vulnerable and prone to loss or change, rendering the context associated with it (a tweet, post, status, or others) meaningless. There is an inherent value in maintaining the consistency of such social records as in some cases they take over the task of being the first draft of history as collections of these social posts narrate the pulse of the street during historic events, protest, riots, elections, war, disasters, and others as shown in this work. The user sharing the resource has an implicit temporal intent: either the state of the resource at the time of sharing, or the current state of the resource at the time of the reader \clicking . In this research, we propose a model to detect and predict the user\u27s temporal intention of the author upon sharing content in the social network and of the reader upon resolving this content. To build this model, we first examine the three aspects of the problem: the resource, time, and the user. For the resource we start by analyzing the content on the live web and its persistence. We noticed that a portion of the resources shared in social media disappear, and with further analysis we unraveled a relationship between this disappearance and time. We lose around 11% of the resources after one year of sharing and a steady 7% every following year. With this, we turn to the public archives and our analysis reveals that not all posted resources are archived and even they were an average 8% per year disappears from the archives and in some cases the archived content is heavily damaged. These observations prove that in regards to archives resources are not well-enough populated to consistently and reliably reconstruct the missing resource as it existed at the time of sharing. To analyze the concept of time we devised several experiments to estimate the creation date of the shared resources. We developed Carbon Date, a tool which successfully estimated the correct creation dates for 76% of the test sets. Since the resources\u27 creation we wanted to measure if and how they change with time. We conducted a longitudinal study on a data set of very recently-published tweet-resource pairs and recording observations hourly. We found that after just one hour, ~4% of the resources have changed by ≥30% while after a day the change rate slowed to be ~12% of the resources changed by ≥40%. In regards to the third and final component of the problem we conducted user behavioral analysis experiments and built a data set of 1,124 instances manually assigned by test subjects. Temporal intention proved to be a difficult concept for average users to understand. We developed our Temporal Intention Relevancy Model (TIRM) to transform the highly subjective temporal intention problem into the more easily understood idea of relevancy between a tweet and the resource it links to, and change of the resource through time. On our collected data set TIRM produced a significant 90.27% success rate. Furthermore, we extended TIRM and used it to build a time-based model to predict temporal intention change or steadiness at the time of posting with 77% accuracy. We built a service API around this model to provide predictions and a few prototypes. Future tools could implement TIRM to assist users in pushing copies of shared resources into public web archives to ensure the integrity of the historical record. Additional tools could be used to assist the mining of the existing social media corpus by derefrencing the intended version of the shared resource based on the intention strength and the time between the tweeting and mining

    Supporting exploratory browsing with visualization of social interaction history

    Get PDF
    This thesis is concerned with the design, development, and evaluation of information visualization tools for supporting exploratory browsing. Information retrieval (IR) systems currently do not support browsing well. Responding to user queries, IR systems typically compute relevance scores of documents and then present the document surrogates to users in order of relevance. Other systems such as email clients and discussion forums simply arrange messages in reverse chronological order. Using these systems, people cannot gain an overview of a collection easily, nor do they receive adequate support for finding potentially useful items in the collection. This thesis explores the feasibility of using social interaction history to improve exploratory browsing. Social interaction history refers to traces of interaction among users in an information space, such as discussions that happen in the blogosphere or online newspapers through the commenting facility. The basic hypothesis of this work is that social interaction history can serve as a good indicator of the potential value of information items. Therefore, visualization of social interaction history would offer navigational cues for finding potentially valuable information items in a collection. To test this basic hypothesis, I conducted three studies. First, I ran statistical analysis of a social media data set. The results showed that there were positive relationships between traces of social interaction and the degree of interestingness of web articles. Second, I conducted a feasibility study to collect initial feedback about the potential of social interaction history to support information exploration. Comments from the participants were in line with the research hypothesis. Finally, I conducted a summative evaluation to measure how well visualization of social interaction history can improve exploratory browsing. The results showed that visualization of social interaction history was able to help users find interesting articles, to reduce wasted effort, and to increase user satisfaction with the visualization tool

    Studies on User Intent Analysis and Mining

    Get PDF
    Predicting the goals of users can be extremely useful in e-commerce, online entertainment, information retrieval, and many other online services and applications. In this thesis, we study the task of user intent understanding, trying to bridge the gap between user expressions to online services and their goals behind it. As far as we know, most of the existing user intent studies are focusing on web search and social media domain. Studies on other areas are not enough. For example, as people more and more rely our daily life on cellphone, our information needs expressing to mobile devices and related services are increasing dramatically. Studies of user intent mining on mobile devices are not much. And the intentions of using mobile devices are different from the ones we use web search engine or social network. So we cannot directly apply the existing user intention to this area. Besides, user's intents are not stable but changing over time. And different interests will impact each other. Modeling such kind of dynamic user interests can help accurately understand and predict user's intent. But there're few existing works in this area. Moreover, user intent could be explicitly or implicitly expressed by users. The implicit intent expression is more close to human's natural language and also have great value to recognize and mine. To make further studies of these challenges, we first try to answer the question of “What is the user intent?” By referring amount of previous studies, we give our definition of user intent as “User intent is a task-specific, predefined or latent concept, topic or knowledge-base that is under an expression from a user who is trying to express his goal of information or service need.“ Then, we focus on the driving scenario when a user using cellphone and study the user intent in this domain. As far as we know, it is the first time of user intent analysis and categorization in this domain. And we also build a dataset of user input and related intent category and attributes by crowdsourcing and carefully handcraft. With the user intent taxonomy and dataset in hand, we conduct a user intent classification and user intent attribute recognition by supervised machine learning models. To classify the user intent for a user intent query, we use a convolutional neural network model to build a multi-class classifier. And then we use a sequential labeling method to recognize the intent attribute in the query. The experiment results show that our proposed method outperforms several baseline models in precision, recall, and F-score. In addition, we study the implicit user intent mining method through web search log data. By using a Restricted Boltzmann Machine, we make use of the correlation of query and click information to learn the latent intent behind a user web search. We propose a user intent prediction model on online discussion forum using Multivariate Hawkes Process. It dynamically models user intentions change and interact over time.The method models both of the internal and external factors of user's online forum response motivations, and also integrated the time decay fact of user's interests. We also present a data visualization method, using an enriched domain ontology to highlight the domain-specific words and entity relations within an article.Ph.D., Information Studies -- Drexel University, 201

    Entity-Oriented Search

    Get PDF
    This open access book covers all facets of entity-oriented search—where “search” can be interpreted in the broadest sense of information access—from a unified point of view, and provides a coherent and comprehensive overview of the state of the art. It represents the first synthesis of research in this broad and rapidly developing area. Selected topics are discussed in-depth, the goal being to establish fundamental techniques and methods as a basis for future research and development. Additional topics are treated at a survey level only, containing numerous pointers to the relevant literature. A roadmap for future research, based on open issues and challenges identified along the way, rounds out the book. The book is divided into three main parts, sandwiched between introductory and concluding chapters. The first two chapters introduce readers to the basic concepts, provide an overview of entity-oriented search tasks, and present the various types and sources of data that will be used throughout the book. Part I deals with the core task of entity ranking: given a textual query, possibly enriched with additional elements or structural hints, return a ranked list of entities. This core task is examined in a number of different variants, using both structured and unstructured data collections, and numerous query formulations. In turn, Part II is devoted to the role of entities in bridging unstructured and structured data. Part III explores how entities can enable search engines to understand the concepts, meaning, and intent behind the query that the user enters into the search box, and how they can provide rich and focused responses (as opposed to merely a list of documents)—a process known as semantic search. The final chapter concludes the book by discussing the limitations of current approaches, and suggesting directions for future research. Researchers and graduate students are the primary target audience of this book. A general background in information retrieval is sufficient to follow the material, including an understanding of basic probability and statistics concepts as well as a basic knowledge of machine learning concepts and supervised learning algorithms

    Sketching the vision of the Web of Debates

    Get PDF
    The exchange of comments, opinions, and arguments in blogs, forums, social media, wikis, and review websites has transformed the Web into a modern agora, a virtual place where all types of debates take place. This wealth of information remains mostly unexploited: due to its textual form, such information is difficult to automatically process and analyse in order to validate, evaluate, compare, combine with other types of information and make it actionable. Recent research in Machine Learning, Natural Language Processing, and Computational Argumentation has provided some solutions, which still cannot fully capture important aspects of online debates, such as various forms of unsound reasoning, arguments that do not follow a standard structure, information that is not explicitly expressed, and non-logical argumentation methods. Tackling these challenges would give immense added-value, as it would allow searching for, navigating through and analyzing online opinions and arguments, obtaining a better picture of the various debates for a well-intentioned user. Ultimately, it may lead to increased participation of Web users in democratic, dialogical interchange of arguments, more informed decisions by professionals and decision-makers, as well as to an easier identification of biased, misleading, or deceptive arguments. This paper presents the vision of the Web of Debates, a more human-centered version of the Web, which aims to unlock the potential of the abundance of argumentative information that currently exists online, offering its users a new generation of argument-based web services and tools that are tailored to their real needs
    corecore