1,322 research outputs found

    Structural correlates of spoken language abilities : a surface-based region-of interest morphometry study

    Get PDF
    Brain structure can predict many aspects of human behavior, though the extent of this relationship in healthy adults, particularly for language-related skills, remains largely unknown. The objective of the present study was to explore this relation using magnetic resonance imaging (MRI) on a group of 21 healthy young adults who completed two language tasks: (1) semantic fluency and (2) sentence generation. For each region of interest, cortical thickness, surface area, and volume were calculated. The results show that verbal fluency scores correlated mainly with measures of brain morphology in the left inferior frontal cortex and bilateral insula. Sentence generation scores correlated with structure of the left inferior parietal and right inferior frontal regions. These results reveal that the anatomy of several structures in frontal and parietal lobes is associated with spoken language performance. The presence of both negative and positive correlations highlights the complex relation between brain and language

    Connectivity of the Cingulate Sulcus Visual Area (CSv) in the Human Cerebral Cortex

    Get PDF
    Contains fulltext : 181333.pdf (publisher's version ) (Open Access)The human cingulate sulcus visual area (CSv) responds selectively to visual and vestibular cues to self-motion. Although it is more selective for visual self-motion cues than any other brain region studied, it is not known whether CSv mediates perception of self-motion. An alternative hypothesis, based on its location, is that it provides sensory information to the motor system for use in guiding locomotion. To evaluate this hypothesis we studied the connectivity pattern of CSv, which is completely unknown, with a combination of diffusion MRI and resting-state functional MRI. Converging results from the 2 approaches suggest that visual drive is provided primarily by areas hV6, pVIP (putative intraparietal cortex) and PIC (posterior insular cortex). A strong connection with the medial portion of the somatosensory cortex, which represents the legs and feet, suggests that CSv may receive locomotion-relevant proprioceptive information as well as visual and vestibular signals. However, the dominant connections of CSv are with specific components of the motor system, in particular the cingulate motor areas and the supplementary motor area. We propose that CSv may provide a previously unknown link between perception and action that serves the online control of locomotion.13 p

    The complex hodological architecture of the macaque dorsal intraparietal areas as emerging from neural tracers and dw-mri tractography

    Get PDF
    In macaque monkeys, dorsal intraparietal areas are involved in several daily visuomotor actions. However, their border and sources of cortical afferents remain loosely defined. Combining retrograde histologic tracing and MRI diffusion-based tractography, we found a complex hodology of the dorsal bank of the intraparietal sulcus (db-IPS), which can be subdivided into a rostral intraparietal area PEip, projecting to the spinal cord, and a caudal medial intraparietal area MIP lacking such projections. Both include an anterior and a posterior sector, emerging from their ipsilateral, gradient-like connectivity profiles. As tractography estimations, we used the cross-sectional area of the white matter bundles connecting each area with other parietal and frontal regions, after selecting regions of interest (ROIs) corresponding to the injection sites of neural tracers. For most connections, we found a significant correlation between the proportions of cells projecting to all sectors of PEip and MIP along the continuum of the db-IPS and tractography. The latter also revealed “false positive” but plausible connections awaiting histologic validation

    Identification of neurobiological mechanisms associated with attention deficits in adults post traumatic brain injury

    Get PDF
    Traumatic Brain Injury (TBI) is one of the major public health concerns with approximately 70 million new cases occurring worldwide per year. It is often caused by a forceful bump, blow, or jolt to the head, resulting in brain tissue damage and normal brain functions disruption. All grades of TBI, ranging from mild to severe, can cause wide-ranging and long-term effects on affected individuals, resulting in physical impairments, and neurocognitive consequences that permanently affect their abilities to perform daily activities. Attention deficits are the most common persisting neurocognitive consequences following TBI, which significantly contribute to poor academic and social functioning, and life-long learning difficulties of affected individuals. However, attention deficits have been evaluated and treated based on symptom endorsements from subjective observations, with few therapeutic interventions successfully translated to the clinic. The consensus regarding appropriate evaluation and treatment of TBI induced attention deficits in this cohort is rather limited due to the lack of investigations of the neurobiological substrates associated with this syndrome. The overall aim of this dissertation research is to systematically investigate the neurobiological mechanisms associated with attention deficits in adults post TBI by utilizing multiple powerful neuroimaging techniques including the functional near-infrared spectroscopy (fNIRS) and multimodal magnetic resonance imaging (MRI), with an ultimate goal of translating hypothesis-driven neurobiological correlates into the quantitatively measurable biomarkers for diagnosis of TBI-induced attention deficits and development of more refined long-term treatment and intervention strategies. This dissertation research is conducted through three specific projects. Project 1 focuses on the investigation of brain functional patterns including the regional cortical brain activation and between-regional pairwise functional connectivity responding to visual sustained attention processing in individuals with and without TBI, by utilizing the fNIRS technique. Project 2 continues the examination of brain functional patterns by assessing the whole brain network topological properties responding to visual sustained attention processing in a larger sample of individuals with and without TBI, by utilizing the functional MRI technique and a graph theoretic approach. Project 3, on the other hand, investigates the brain structural characteristics based on the same sample involved in Project 2, by utilizing the structural MRI and diffusion tensor imaging techniques. For all these three projects, the differences of these brain imaging measures are compared between the groups of TBI and control. Correlation analyses are further conducted between those brain imaging measures which shows significant between-group differences and attention-related behaviors. In addition, Project 3 additionally investigates gender-specific patterns of the altered brain structural properties in TBI patients, relative to controls. The outcome of this novel and valuable dissertation research may shed light on the neural mechanisms of attention deficits in adults post TBI, and may suggest the neurobiological targets for treatment of this severe and common condition. It may also provide important neural foundation for future research to develop effective rehabilitation strategies to improve attention processing in adults post TBI

    Enhanced pre-frontal functional-structural networks to support postural control deficits after traumatic brain injury in a pediatric population

    Get PDF
    Traumatic brain injury (TBI) affects the structural connectivity, triggering the re-organization of structural-functional circuits in a manner that remains poorly understood. We focus here on brain networks re-organization in relation to postural control deficits after TBI. We enrolled young participants who had suffered moderate to severeTBI, comparing them to young typically developing control participants. In comparison to control participants, TBI patients (but not controls) recruited prefrontal regions to interact with two separated networks: 1) a subcortical network including part of the motor network, basal ganglia, cerebellum, hippocampus, amygdala, posterior cingulum and precuneus; and 2) a task-positive network, involving regions of the dorsal attention system together with the dorsolateral and ventrolateral prefrontal regions

    The Japan Monkey Centre Primates Brain Imaging Repository for comparative neuroscience: an archive of digital records including records for endangered species

    Get PDF
    Advances in magnetic resonance imaging (MRI) and computational analysis technology have enabled comparisons among various primate brains in a three-dimensional electronic format. Results from comparative studies provide information about common features across primates and species-specific features of neuroanatomy. Investigation of various species of non-human primates is important for understanding such features, but the majority of comparative MRI studies have been based on experimental primates, such as common marmoset, macaques, and chimpanzee. A major obstacle has been the lack of a database that includes non-experimental primates’ brain MRIs. To facilitate scientific discoveries in the field of comparative neuroanatomy and brain evolution, we launched a collaborative project to develop an open-resource repository of non-human primate brain images obtained using ex vivo MRI. As an initial open resource, here we release a collection of structural MRI and diffusion tensor images obtained from 12 species: pygmy marmoset, owl monkey, white-fronted capuchin, crab-eating macaque, Japanese macaque, bonnet macaque, toque macaque, Sykes’ monkey, red-tailed monkey, Schmidt’s guenon, de Brazza’s guenon, and lar gibbon. Sixteen postmortem brain samples from the 12 species, stored in the Japan Monkey Centre (JMC), were scanned using a 9.4-T MRI scanner and made available through the JMC collaborative research program (http://www.j-monkey.jp/BIR/index_e.html). The expected significant contributions of the JMC Primates Brain Imaging Repository include (1) resources for comparative neuroscience research, (2) preservation of various primate brains, including those of endangered species, in a permanent digital form, (3) resources with higher resolution for identifying neuroanatomical features, compared to previous MRI atlases, (4) resources for optimizing methods of scanning large fixed brains, and (5) references for veterinary neuroradiology. User-initiated research projects beyond these contributions are also anticipated

    Driving and Driven Architectures of Directed Small-World Human Brain Functional Networks

    Get PDF
    Recently, increasing attention has been focused on the investigation of the human brain connectome that describes the patterns of structural and functional connectivity networks of the human brain. Many studies of the human connectome have demonstrated that the brain network follows a small-world topology with an intrinsically cohesive modular structure and includes several network hubs in the medial parietal regions. However, most of these studies have only focused on undirected connections between regions in which the directions of information flow are not taken into account. How the brain regions causally influence each other and how the directed network of human brain is topologically organized remain largely unknown. Here, we applied linear multivariate Granger causality analysis (GCA) and graph theoretical approaches to a resting-state functional MRI dataset with a large cohort of young healthy participants (n = 86) to explore connectivity patterns of the population-based whole-brain functional directed network. This directed brain network exhibited prominent small-world properties, which obviously improved previous results of functional MRI studies showing weak small-world properties in the directed brain networks in terms of a kernel-based GCA and individual analysis. This brain network also showed significant modular structures associated with 5 well known subsystems: fronto-parietal, visual, paralimbic/limbic, subcortical and primary systems. Importantly, we identified several driving hubs predominantly located in the components of the attentional network (e.g., the inferior frontal gyrus, supplementary motor area, insula and fusiform gyrus) and several driven hubs predominantly located in the components of the default mode network (e.g., the precuneus, posterior cingulate gyrus, medial prefrontal cortex and inferior parietal lobule). Further split-half analyses indicated that our results were highly reproducible between two independent subgroups. The current study demonstrated the directions of spontaneous information flow and causal influences in the directed brain networks, thus providing new insights into our understanding of human brain functional connectome

    Three shades of grey : detecting brain abnormalities in children with autism by using source-, voxel- and surface-based morphometry

    Get PDF
    Autistic spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social interactions, communication and stereotyped behavior. Recent evidence from neuroimaging supports the hypothesis that ASD deficits in adults may be related to abnormalities in a specific frontal - temporal network (Autism-specific Structural Network, ASN). To see whether these results extend to younger children and to better characterize these abnormalities, we applied three morphometric methods on brain grey matter of children with and without ASD. We selected 39 sMRI images of male children with ASD and 42 typically developing (TD) from the ABIDE database. We used Source -Based Morphometry (SoBM), a whole-brain multivariate approach to identify grey matter networks, Voxel-Based Morphometry (VBM), a voxel-wise comparison of the local grey matter concentration, and Surface-Based Morphometry (SuBM) for the estimation of the cortical parameters. SoBM showed a bilateral frontal - parietal - temporal network different between groups, including the inferior - middle temporal gyrus, the inferior parietal lobule and the postcentral gyrus; VBM returned differences only in the right temporal lobe; SuBM returned a thinning in the right inferior temporal lobe thinner in ASD, a higher gyrification in the right superior parietal lobule in TD and in the middle frontal gyrus in ASD

    The complex hodological architecture of the macaque dorsal intraparietal areas as emerging from neural tracers and DW-MRI tractography

    Get PDF
    In macaque monkeys, dorsal intraparietal areas are involved in several daily visuo-motor actions. However, their border and sources of cortical afferents remain loosely defined. Combining retrograde histological tracing and MRI diffusion-based tractography we found a complex hodology of the dorsal bank of the IPS, which can be subdivided into a rostral area PEip, projecting to the spinal cord, and a caudal area MIP lacking such projections. Both include a rostral and a caudal sector, emerging from their ipsilateral, gradient-like connectivity profiles. As tractography estimations, we used the cross-sectional volume of the white matter bundles connecting each area with other parietal and frontal regions, after selecting ROIs corresponding to the injection sites of neural tracers. For most connections, we found a significant correlation between the proportions of cells projecting to all sectors of PEip and MIP along the continuum of the dorsal bank of the IPS and tractography. The latter also revealed “false positive” but plausible streamlines awaiting histological validation
    corecore