5,003 research outputs found

    Leveraging RFID in hospitals: patient life cycle and mobility perspectives

    Get PDF
    The application of Radio Frequency Identification (RFID) to patient care in hospitals and healthcare facilities has only just begun to be accepted. This article develops a set of frameworks based on patient life cycle and time-and-motion perspectives for how RFID can be leveraged atop existing information systems to offer many benefits for patient care and hospital operations. It examines how patients are processed from admission to discharge, and considers where RFID can be applied. From a time-and-motion perspective, it shows how hospitals can apply RFID in three ways: fixed RFID readers interrogate mobile objects; mobile, handheld readers interrogate fixed objects; and mobile, handheld readers interrogate mobile objects. Implemented properly, RFID can significantly aid the medical staff in performing their duties. It can greatly reduce the need for manual entry of records, increase security for both patient and hospital, and reduce errors in administering medication. Hospitals are likely to encounter challenges, however, when integrating the technology into their day-to-day operations. What we present here can help hospital administrators determine where RFID can be deployed to add the most value

    Reliable Identification of RFID Tags Using Multiple Independent Reader Sessions

    Full text link
    Radio Frequency Identification (RFID) systems are gaining momentum in various applications of logistics, inventory, etc. A generic problem in such systems is to ensure that the RFID readers can reliably read a set of RFID tags, such that the probability of missing tags stays below an acceptable value. A tag may be missing (left unread) due to errors in the communication link towards the reader e.g. due to obstacles in the radio path. The present paper proposes techniques that use multiple reader sessions, during which the system of readers obtains a running estimate of the probability to have at least one tag missing. Based on such an estimate, it is decided whether an additional reader session is required. Two methods are proposed, they rely on the statistical independence of the tag reading errors across different reader sessions, which is a plausible assumption when e.g. each reader session is executed on different readers. The first method uses statistical relationships that are valid when the reader sessions are independent. The second method is obtained by modifying an existing capture-recapture estimator. The results show that, when the reader sessions are independent, the proposed mechanisms provide a good approximation to the probability of missing tags, such that the number of reader sessions made, meets the target specification. If the assumption of independence is violated, the estimators are still useful, but they should be corrected by a margin of additional reader sessions to ensure that the target probability of missing tags is met.Comment: Presented at IEEE RFID 2009 Conferenc

    Critical Management Issues for Implementing RFID in Supply Chain Management

    Get PDF
    The benefits of radio frequency identification (RFID) technology in the supply chain are fairly compelling. It has the potential to revolutionise the efficiency, accuracy and security of the supply chain with significant impact on overall profitability. A number of companies are actively involved in testing and adopting this technology. It is estimated that the market for RFID products and services will increase significantly in the next few years. Despite this trend, there are major impediments to RFID adoption in supply chain. While RFID systems have been around for several decades, the technology for supply chain management is still emerging. We describe many of the challenges, setbacks and barriers facing RFID implementations in supply chains, discuss the critical issues for management and offer some suggestions. In the process, we take an in-depth look at cost, technology, standards, privacy and security and business process reengineering related issues surrounding RFID technology in supply chains

    Completely pinpointing the missing RFID tags in a time-efficient way

    Get PDF
    PublishedJournal Article© 1968-2012 IEEE. Radio Frequency Identification (RFID) technology has been widely used in inventory management in many scenarios, e.g., warehouses, retail stores, hospitals, etc. This paper investigates a challenging problem of complete identification of missing tags in large-scale RFID systems. Although this problem has attracted extensive attention from academy and industry, the existing work can hardly satisfy the stringent real-time requirements. In this paper, a Slot Filter-based Missing Tag Identification (SFMTI) protocol is proposed to reconcile some expected collision slots into singleton slots and filter out the expected empty slots as well as the unreconcilable collision slots, thereby achieving the improved time-efficiency. The theoretical analysis is conducted to minimize the execution time of the proposed SFMTI. We then propose a cost-effective method to extend SFMTI to the multi-reader scenarios. The extensive simulation experiments and performance results demonstrate that the proposed SFMTI protocol outperforms the most promising Iterative ID-free Protocol (IIP) by reducing nearly 45% of the required execution time, and is just within a factor of 1.18 from the lower bound of the minimum execution time.This work was supported by NSFC (Grant Nos. 60973117, 61173160, 61173162, 60903154, and 61321491), New Century Excellent Talents in University (NCET) of Ministry of Education of China, the National Science Foundation for Distinguished Young Scholars of China (Grant No. 61225010), the Doctoral Fund of Ministry of Education of China (Grant No. 20130041110019), and the Project funded by China Postdoctoral Science Foundation
    • …
    corecore