290 research outputs found

    Time-frequency techniques for modal parameters identification of civil structures from acquired dynamic signals

    Get PDF
    A major trust of modal parameters identification (MPI) research in recent years has been based on using artificial and natural vibrations sources because vibration measurements can reflect the true dynamic behavior of a structure while analytical prediction methods, such as finite element models, are less accurate due to the numerous structural idealizations and uncertainties involved in the simulations. This paper presents a state-of-the-art review of the time-frequency techniques for modal parameters identification of civil structures from acquired dynamic signals as well as the factors that affect the estimation accuracy. Further, the latest signal processing techniques proposed since 2012 are also reviewed. These algorithms are worth being researched for MPI of large real-life structures because they provide good time-frequency resolution and noise-immunity

    Condition assessment of bridge structures using statistical analysis of wavelets

    Get PDF
    La surveillance à distance des structures a émergé comme une préoccupation importante pour les ingénieurs afin de maintenir la sécurité et la fiabilité des infrastructures civiles pendant leur durée de vie. Les techniques de surveillance structurale (SHM) sont de plus en plus populaires pour fournir un diagnostic de "l'état" des structures en raison de leur vieillissement, de la dégradation des matériaux ou de défauts survenus pendant leur construction. Les limites de l'inspection visuelle et des techniques non destructives, qui sont couramment utilisées pour détecter des défauts extrêmes sur les parties accessibles des structures, ont conduit à la découverte de nouvelles technologies qui évaluent d’un seul tenant l'état global d'une structure surveillée. Les techniques de surveillance globale ont été largement utilisées pour la reconnaissance d'endommagement dans les grandes infrastructures civiles, telles que les ponts, sur la base d'une analyse modale de la réponse dynamique structurale. Cependant, en raison des caractéristiques complexes des structures oeuvrant sous des conditions environnementales variables et des incertitudes statistiques dans les paramètres modaux, les techniques de diagnostic actuelles n'ont pas été concluantes pour conduire à une méthodologie robuste et directe pour détecter les incréments de dommage avant qu'ils n'atteignent un stade critique. C’est ainsi que des techniques statistiques de reconnaissance de formes sont incorporées aux méthodes de détection d'endommagement basées sur les vibrations pour fournir une meilleure estimation de la probabilité de détection des dommages dans des applications in situ, ce qui est habituellement difficile compte tenu du rapport bruit à signal élevé. Néanmoins, cette partie du SHM est encore à son stade initial de développement et, par conséquent, d'autres tentatives sont nécessaires pour parvenir à une méthodologie fiable de détection de l'endommagement. Une stratégie de détection de dommages basée sur des aspects statistiques a été proposée pour détecter et localiser de faibles niveaux incrémentiels d'endommagement dans une poutre expérimentale pour laquelle tant le niveau d'endommagement que les conditions de retenue sont réglables (par exemple ancastrée-ancastrée et rotulée-rotulée). Premièrement, des expériences ont été effectuées dans des conditions de laboratoire contrôlées pour détecter de faibles niveaux d'endommagement induits (par exemple une fissure correspondant à 4% de la hauteur d’une section rectangulaire équivalente) simulant des scénarios d'endommagement de stade précoce pour des cas réels. Différents niveaux d'endommagement ont été simulés à deux endroits distincts le long de la poutre. Pour chaque série d'endommagement incrémentiel, des mesures répétées (~ 50 à 100) ont été effectuées pour tenir compte de l'incertitude et de la variabilité du premier mode de vibration de la structure en raison d'erreurs expérimentales et du bruit. Une technique d'analyse par ondelette basée sur les modes a été appliquée pour détecter les changements anormaux survenant dans les modes propres causées par le dommage. La réduction du bruit ainsi que les caractéristiques des agrégats ont été obtenues en mettant en œuvre l'analyse des composantes principales (PCA) pour l'ensemble des coefficients d'ondelettes calculés à des nœuds (ou positions) régulièrement espacés le long du mode propre. En rejetant les composantes qui contribuent le moins à la variance globale, les scores PCA correspondant aux premières composantes principales se sont révélés très corrélés avec de faibles niveaux d'endommagement incrémentiel. Des méthodes classiques d'essai d'hypothèses ont été effectuées sur les changements des paramètres de localisation des scores pour conclure objectivement et statistiquement, à un niveau de signification donné, sur la présence du dommage. Lorsqu'un dommage statistiquement significatif a été détecté, un nouvel algorithme basé sur les probabilités a été développé pour déterminer l'emplacement le plus probable de l'endommagement le long de la structure. Deuxièmement, se basant sur l'approche probabiliste, une série de tests a été effectuée dans une chambre environnementale à température contrôlée pour étudier les contributions relatives des effets de l’endommagement et de la température sur les propriétés dynamiques de la poutre afin d’estimer un facteur de correction pour l'ajustement des scores extraits. Il s'est avéré que la température avait un effet réversible sur la distribution des scores et que cet effet était plus grand lorsque le niveau d'endommagement était plus élevé. Les résultats obtenus pour les scores ajustés indiquent que la correction des effets réversibles de la température peut améliorer la probabilité de détection et minimiser les fausses alarmes. Les résultats expérimentaux indiquent que la contribution combinée des algorithmes utilisés dans cette étude était très efficace pour détecter de faibles niveaux d'endommagement incrémentiel à plusieurs endroits le long de la poutre tout en minimisant les effets indésirables du bruit et de la température dans les résultats. Les résultats de cette recherche démontrent que l'approche proposée est prometteuse pour la surveillance des structures. Cependant, une quantité importante de travail de validation est attendue avant sa mise en œuvre sur des structures réelles. Mots-clés : Détection et localisation des dommages, Poutre, Mode propre, Ondelette, Analyse des composantes principales, Rapport de probabilité, TempératureRemote monitoring of structures has emerged as an important concern for engineers to maintain safety and reliability of civil infrastructure during its service life. Structural Health Monitoring (SHM) techniques are increasingly becoming popular to provide ideas for diagnosis of the "state" of potential defects in structures due to aging, deterioration and fault during construction. The limitations of visual inspection and non-destructive techniques, which were commonly used to detect extreme defects on only accessible portions of structures, led to the discovery of new technologies which assess the "global state" of a monitored structure at once. Global monitoring techniques have been used extensively for the recognition of damage in large civil infrastructure, such as bridges, based on modal analysis of structural dynamic response. However, because of complicated features of real-life structures under varying environmental conditions and statistical uncertainties in modal parameters, current diagnosis techniques have not been conclusive in ascertaining a robust and straightforward methodology to detect damage increments before it reaches its critical stage. Statistical pattern recognition techniques are incorporated with vibration-based damage detection methods to provide a better estimate for the probability of the detection of damage in field applications, which is usually challenging given the high noise to signal ratio. Nevertheless, this part of SHM is still in its initial stage of development and, hence, further attempts are required to achieve a reliable damage detection methodology. A statistical-based damage detection strategy was proposed to detect and localize low levels of incremental damage in an experimental beam in which the level of damage and beam restraint conditions are adjustable (e.g. fixed-fixed and pinned-pinned). First, experiments were performed in controlled laboratory conditions to detect small levels of induced-damage (e.g. 4% crack height for an equivalent rectangular section) simulated for early stage damage scenarios in real cases. Various levels of damage were simulated at two distinct locations along the beam. For each sate of incremental damage, repeat measurements (~ 50 to 100) were performed to account for uncertainty and variability in the first vibration mode of the structure due to experimental errors and noise. A modal-based wavelet analysis technique was applied to detect abnormal changes occurring in the mode shapes caused by damage. Noise reduction as well as aggregate characteristics were obtained by implementing the Principal Component Analysis (PCA) into the set of wavelet coefficients computed at regularly spaced nodes along the mode shape. By discarding components that contribute least to the overall variance, the PCA scores corresponding to the first few PCs were found to be highly correlated with low levels of incremental damage. Classical hypothesis testing methods were performed on changes on the location parameters of the scores to conclude damage objectively and statistically at a given significance level. When a statistically significant damage was detected, a novel Likelihood-based algorithm was developed to determine the most likely location of damage along the structure. Secondly, given the likelihood approach, a series of tests were carried out in a climate-controlled room to investigate the relative contributions of damage and temperature effects on the dynamic properties of the beam and to estimate a correction factor for the adjustment of scores extracted. It was found that the temperature had a reversible effect on the distribution of scores and that the effect was larger when the damage level was higher. The resulted obtained for the adjusted scores indicated that the correction for reversible effects of temperature can improve the probability of detection and minimize false alarms. The experimental results indicate that the combined contribution of the algorithms used in this study were very efficient to detect small-scale levels of incremental damage at multiple locations along the beam, while minimizing undesired effects of noise and temperature in the results. The results of this research demonstrate that the proposed approach may be used as a promising tool for SHM of actual structures. However, a significant amount of challenging work is expected for implementing it on real structures. Key-words: Damage Detection and Localization, Beam, Mode Shape, Wavelet, Principal Component Analysis, Likelihood Ratio, Temperatur

    Signal Processing Methodology of Response Data from a Historical Arch Bridge toward Reliable Modal Identification

    Get PDF
    The paper is part of a case study concerning the structural assessment of a historical infrastructure in the local territory, a road three-span reinforced concrete arch bridge over a river, built by the end of World War I (1917). The purpose of the paper is twofold: first, in-situ acquired response data are systematically analysed by specific signal processing techniques, to form a devoted methodological procedure and to extract useful information toward possible interpretation of the current structural conditions; second, the deciphered information is elaborated, in view of obtaining peculiar conceptualisations of detailed features of the structural response, as meant to achieve quantitative descriptions and modelling, for final Structural Health Monitoring (SHM) and intervention purposes. The proposed methodology, integrating self-implemented and adapted classical signal processing methods, and refined techniques, such as Wavelet analysis and ARMA models, assembles a rather general, systematic methodological approach to signal processing, highlighting the capability to extract useful and fundamental information from acquired response data, also endowed of a non-stationary character, toward final structural interpretation, identification and modelling, thus enabling for developing a reliable and effective SHM platform, on strategic ageing infrastructures. For the present case study, non-stationary characteristics of the response signals are revealed and flattened out, to identify the underlying fundamental frequencies of the infrastructure and to advance particular interpretations of its current structural behaviour, in forming an enlarging structural consciousness of the bridge at hand

    Development of a machine learning based methodology for bridge health monitoring

    Get PDF
    Tesi en modalitat de compendi de publicacionsIn recent years the scientific community has been developing new techniques in structural health monitoring (SHM) to identify the damages in civil structures specially in bridges. The bridge health monitoring (BHM) systems serve to reduce overall life-cycle maintenance costs for bridges, as their main objective is to prevent catastrophic failures and damages. In the BHM using dynamic data, there are several problems related to the post-processing of the vibration signals such as: (i) when the modal-based dynamic features like natural frequencies, modes shape and damping are used, they present a limitation in relation to damage location, since they are based on a global response of the structure; (ii) presence of noise in the measurement of vibration responses; (iii) inadequate use of existing algorithms for damage feature extraction because of neglecting the non-linearity and non-stationarity of the recorded signals; (iv) environmental and operational conditions can also generate false damage detections in bridges; (v) the drawbacks of traditional algorithms for processing large amounts of data obtained from the BHM. This thesis proposes new vibration-based parameters and methods with focus on damage detection, localization and quantification, considering a mixed robust methodology that includes signal processing and machine learning methods to solve the identified problems. The increasing volume of bridge monitoring data makes it interesting to study the ability of advanced tools and systems to extract useful information from dynamic and static variables. In the field of Machine Learning (ML) and Artificial Intelligence (AI), powerful algorithms have been developed to face problems where the amount of data is much larger (big data). The possibilities of ML techniques (unsupervised algorithms) were analyzed here in bridges taking into account both operational and environmental conditions. A critical literature review was performed and a deep study of the accuracy and performance of a set of algorithms for detecting damage in three real bridges and one numerical model. In the literature review inherent to the vibration-based damage detection, several state-of-the-art methods have been studied that do not consider the nature of the data and the characteristics of the applied excitation (possible non-linearity, non-stationarity, presence or absence of environmental and/or operational effects) and the noise level of the sensors. Besides, most research uses modal-based damage characteristics that have some limitations. A poor data normalization is performed by the majority of methods and both operational and environmental variability is not properly accounted for. Likewise, the huge amount of data recorded requires automatic procedures with proven capacity to reduce the possibility of false alarms. On the other hand, many investigations have limitations since only numerical or laboratory cases are studied. Therefore, a methodology is proposed by the combination of several algorithms to avoid them. The conclusions show a robust methodology based on ML algorithms capable to detect, localize and quantify damage. It allows the engineers to verify bridges and anticipate significant structural damage when occurs. Moreover, the proposed non-modal parameters show their feasibility as damage features using ambient and forced vibrations. Hilbert-Huang Transform (HHT) in conjunction with Marginal Hilbert Spectrum and Instantaneous Phase Difference shows a great capability to analyze the nonlinear and nonstationary response signals for damage identification under operational conditions. The proposed strategy combines algorithms for signal processing (ICEEMDAN and HHT) and ML (k-means) to conduct damage detection and localization in bridges by using the traffic-induced vibration data in real-time operation.En los últimos años la comunidad científica ha desarrollado nuevas técnicas en monitoreo de salud estructural (SHM) para identificar los daños en estructuras civiles especialmente en puentes. Los sistemas de monitoreo de puentes (BHM) sirven para reducir los costos generales de mantenimiento del ciclo de vida, ya que su principal objetivo es prevenir daños y fallas catastróficas. En el BHM que utiliza datos dinámicos, existen varios problemas relacionados con el procesamiento posterior de las señales de vibración, tales como: (i) cuando se utilizan características dinámicas modales como frecuencias naturales, formas de modos y amortiguamiento, presentan una limitación en relación con la localización del daño, ya que se basan en una respuesta global de la estructura; (ii) presencia de ruido en la medición de las respuestas de vibración; (iii) uso inadecuado de los algoritmos existentes para la extracción de características de daño debido a la no linealidad y la no estacionariedad de las señales registradas; (iv) las condiciones ambientales y operativas también pueden generar falsas detecciones de daños en los puentes; (v) los inconvenientes de los algoritmos tradicionales para procesar grandes cantidades de datos obtenidos del BHM. Esta tesis propone nuevos parámetros y métodos basados en vibraciones con enfoque en la detección, localización y cuantificación de daños, considerando una metodología robusta que incluye métodos de procesamiento de señales y aprendizaje automático. El creciente volumen de datos de monitoreo de puentes hace que sea interesante estudiar la capacidad de herramientas y sistemas avanzados para extraer información útil de variables dinámicas y estáticas. En el campo del Machine Learning (ML) y la Inteligencia Artificial (IA) se han desarrollado potentes algoritmos para afrontar problemas donde la cantidad de datos es mucho mayor (big data). Aquí se analizaron las posibilidades de las técnicas ML (algoritmos no supervisados) teniendo en cuenta tanto las condiciones operativas como ambientales. Se realizó una revisión crítica de la literatura y se llevó a cabo un estudio profundo de la precisión y el rendimiento de un conjunto de algoritmos para la detección de daños en tres puentes reales y un modelo numérico. En la revisión de literatura se han estudiado varios métodos que no consideran la naturaleza de los datos y las características de la excitación aplicada (posible no linealidad, no estacionariedad, presencia o ausencia de efectos ambientales y/u operativos) y el nivel de ruido de los sensores. Además, la mayoría de las investigaciones utilizan características de daño modales que tienen algunas limitaciones. Estos métodos realizan una normalización deficiente de los datos y no se tiene en cuenta la variabilidad operativa y ambiental. Asimismo, la gran cantidad de datos registrados requiere de procedimientos automáticos para reducir la posibilidad de falsas alarmas. Por otro lado, muchas investigaciones tienen limitaciones ya que solo se estudian casos numéricos o de laboratorio. Por ello, se propone una metodología mediante la combinación de varios algoritmos. Las conclusiones muestran una metodología robusta basada en algoritmos de ML capaces de detectar, localizar y cuantificar daños. Permite a los ingenieros verificar puentes y anticipar daños estructurales. Además, los parámetros no modales propuestos muestran su viabilidad como características de daño utilizando vibraciones ambientales y forzadas. La Transformada de Hilbert-Huang (HHT) junto con el Espectro Marginal de Hilbert y la Diferencia de Fase Instantánea muestran una gran capacidad para analizar las señales de respuesta no lineales y no estacionarias para la identificación de daños en condiciones operativas. La estrategia propuesta combina algoritmos para el procesamiento de señales (ICEEMDAN y HHT) y ML (k-means) para detectar y localizar daños en puentes mediante el uso de datos de vibraciones inducidas por el tráfico en tiempo real.Postprint (published version
    corecore