316 research outputs found

    Computational Analysis and Prediction of Intrinsic Disorder and Intrinsic Disorder Functions in Proteins

    Get PDF
    COMPUTATIONAL ANALYSIS AND PREDICTION OF INTRINSIC DISORDER AND INTRINSIC DISORDER FUNCTIONS IN PROTEINS By Akila Imesha Katuwawala A dissertation submitted in partial fulfillment of the requirements for the degree of Engineering, Doctor of Philosophy with a concentration in Computer Science at Virginia Commonwealth University. Virginia Commonwealth University, 2021 Director: Lukasz Kurgan, Professor, Department of Computer Science Proteins, as a fundamental class of biomolecules, have been studied from various perspectives over the past two centuries. The traditional notion is that proteins require fixed and stable three-dimensional structures to carry out biological functions. However, there is mounting evidence regarding a “special” class of proteins, named intrinsically disordered proteins, which do not have fixed three-dimensional structures though they perform a number of important biological functions. Computational approaches have been a vital component to study these intrinsically disordered proteins over the past few decades. Prediction of the intrinsic disorder and functions of intrinsic disorder from protein sequences is one such important computational approach that has recently gained attention, particularly in the advent of the development of modern machine learning techniques. This dissertation runs along two basic themes, namely, prediction of the intrinsic disorder and prediction of the intrinsic disorder functions. The work related to the prediction of intrinsic disorder covers a novel approach to evaluate the predictive performance of the current computational disorder predictors. This approach evaluates the intrinsic disorder predictors at the individual protein level compared to the traditional studies that evaluate them over large protein datasets. We address several interesting aspects concerning the differences in the protein-level vs. dataset-level predictive quality, complementarity and predictive performance of the current predictors. Based on the findings from this assessment we have conceptualized, developed, tested and deployed an innovative platform called DISOselect that recommends the most suitable computational disorder predictors for a given protein, with an underlying goal to maximize the predictive performance. DISOselect provides advice on whether a given disorder predictor would provide an accurate prediction for a given protein of user’s interest, and recommends the most suitable disorder predictor together with an estimate of its expected predictive quality. The second theme, prediction of the intrinsic disorder functions, includes first-of-its-kind evaluation of the current computational disorder predictors on two functional sub-classes of the intrinsically disordered proteins. This study introduces several novel evaluation strategies to assess predictive performance of disorder prediction methods and focuses on the evaluation for disorder functions associated with interactions with partner molecules. Results of this analysis motivated us to conceptualize, design, test and deploy a new and accurate machine learning-based predictor of the disordered lipid-binding residues, DisoLipPred. We empirically show that the strong predictive performance of DisoLipPred stems from several innovative design features and that its predictions complements results produced by current disorder predictors, disorder function predictors and predictors of transmembrane regions. We deploy DisoLipPred as a convenient webserver and discuss its predictions on the yeast proteome

    Leveraging Machine Learning Models for Peptide-Protein Interaction Prediction

    Full text link
    Peptides play a pivotal role in a wide range of biological activities through participating in up to 40% protein-protein interactions in cellular processes. They also demonstrate remarkable specificity and efficacy, making them promising candidates for drug development. However, predicting peptide-protein complexes by traditional computational approaches, such as Docking and Molecular Dynamics simulations, still remains a challenge due to high computational cost, flexible nature of peptides, and limited structural information of peptide-protein complexes. In recent years, the surge of available biological data has given rise to the development of an increasing number of machine learning models for predicting peptide-protein interactions. These models offer efficient solutions to address the challenges associated with traditional computational approaches. Furthermore, they offer enhanced accuracy, robustness, and interpretability in their predictive outcomes. This review presents a comprehensive overview of machine learning and deep learning models that have emerged in recent years for the prediction of peptide-protein interactions.Comment: 46 pages, 10 figure

    Critical assessment of protein intrinsic disorder prediction

    Get PDF
    Abstract: Intrinsically disordered proteins, defying the traditional protein structure–function paradigm, are a challenge to study experimentally. Because a large part of our knowledge rests on computational predictions, it is crucial that their accuracy is high. The Critical Assessment of protein Intrinsic Disorder prediction (CAID) experiment was established as a community-based blind test to determine the state of the art in prediction of intrinsically disordered regions and the subset of residues involved in binding. A total of 43 methods were evaluated on a dataset of 646 proteins from DisProt. The best methods use deep learning techniques and notably outperform physicochemical methods. The top disorder predictor has Fmax = 0.483 on the full dataset and Fmax = 0.792 following filtering out of bona fide structured regions. Disordered binding regions remain hard to predict, with Fmax = 0.231. Interestingly, computing times among methods can vary by up to four orders of magnitude

    The Potential of Intrinsically Disordered Proteins as Drug Targets

    Get PDF
    Tumor necrosis factor α-induced protein 3-interacting protein 1 (TNIP1) is a negative regulator of inflammatory signaling in several diseases. TNIP1 is also an intrinsically disordered protein (IDP), which makes it difficult for current drugs to affect it. More research on IDPs could lead to novel drugs targeting TNIP1, leading to improved therapies for patients with acute and chronic inflammatory diseases. The main difference between IDPs and the more common ordered proteins is that IDPs are flexible, a characteristic of TNIP1 which was demonstrated in this study via protease sensitivity. Ordered proteins are rigid, which means that they only have one well-defined three-dimensional structure. The flexibility of IDPs allows them to have multiple conformations that they can switch between quite easily. However, switching between conformations makes it much harder to solve for the structure of an IDP. Since developing drugs relies heavily on knowing a protein’s structure, IDPs have not yet been common therapeutic targets. Several screening approaches for new IDP-targeting drugs are considered here, including those driven by artificial intelligence. There have been some reports of successful small molecule screens, but finding a universal technique is still in high demand. Currently, it is thought that drugs binding to multiple conformations of IDPs may be beneficial over a drug only binding a single conformation. Since 20-30% of the proteins in our body are IDPs, continued characterization of IDPs could lead to better drug designing methods, more structural information about TNIP1, and a better multifaceted approach for treating psoriasis, cancer, Parkinson’s disease, ischemic vascular diseases, and beyond

    Structural Property Prediction

    Full text link
    While many good textbooks are available on Protein Structure, Molecular Simulations, Thermodynamics and Bioinformatics methods in general, there is no good introductory level book for the field of Structural Bioinformatics. This book aims to give an introduction into Structural Bioinformatics, which is where the previous topics meet to explore three dimensional protein structures through computational analysis. We provide an overview of existing computational techniques, to validate, simulate, predict and analyse protein structures. More importantly, it will aim to provide practical knowledge about how and when to use such techniques. We will consider proteins from three major vantage points: Protein structure quantification, Protein structure prediction, and Protein simulation & dynamics. Some structural properties of proteins that are closely linked to their function may be easier (or much faster) to predict from sequence than the complete tertiary structure; for example, secondary structure, surface accessibility, flexibility, disorder, interface regions or hydrophobic patches. Serving as building blocks for the native protein fold, these structural properties also contain important structural and functional information not apparent from the amino acid sequence. Here, we will first give an introduction into the application of machine learning for structural property prediction, and explain the concepts of cross-validation and benchmarking. Next, we will review various methods that incorporate knowledge of these concepts to predict those structural properties, such as secondary structure, surface accessibility, disorder and flexibility, and aggregation.Comment: editorial responsability: Juami H. M. van Gils, K. Anton Feenstra, Sanne Abeln. This chapter is part of the book "Introduction to Protein Structural Bioinformatics". The Preface arXiv:1801.09442 contains links to all the (published) chapter

    On deep generative modelling methods for protein-protein interaction

    Get PDF
    Proteins form the basis for almost all biological processes, identifying the interactions that proteins have with themselves, the environment, and each other are critical to understanding their biological function in an organism, and thus the impact of drugs designed to affect them. Consequently a significant body of research and development focuses on methods to analyse and predict protein structure and interactions. Due to the breadth of possible interactions and the complexity of structures, \textit{in sillico} methods are used to propose models of both interaction and structure that can then be verified experimentally. However the computational complexity of protein interaction means that full physical simulation of these processes requires exceptional computational resources and is often infeasible. Recent advances in deep generative modelling have shown promise in correctly capturing complex conditional distributions. These models derive their basic principles from statistical mechanics and thermodynamic modelling. While the learned functions of these methods are not guaranteed to be physically accurate, they result in a similar sampling process to that suggested by the thermodynamic principles of protein folding and interaction. However, limited research has been applied to extending these models to work over the space of 3D rotation, limiting their applicability to protein models. In this thesis we develop an accelerated sampling strategy for faster sampling of potential docking locations, we then address the rotational diffusion limitation by extending diffusion models to the space of SO(3)SO(3) and finally present a framework for the use of this rotational diffusion model to rigid docking of proteins

    Augmenting Structure/Function Relationship Analysis with Deep Learning for the Classification of Psychoactive Drug Activity at Class A G Protein-Coupled Receptors

    Get PDF
    G protein-coupled receptors (GPCRs) initiate intracellular signaling pathways via interaction with external stimuli. [1-5] Despite sharing similar structure and cellular mechanism, GPCRs participate in a uniquely broad range of physiological functions. [6] Due to the size and functional diversity of the GPCR family, these receptors are a major focus for pharmacological applications. [1,7] Current state-of-the-art pharmacology and toxicology research strategies rely on computational methods to efficiently design highly selective, low toxicity compounds. [9], [10] GPCR-targeting therapeutics are associated with low selectivity resulting in increased risk of adverse effects and toxicity. Psychoactive drugs that are active at Class A GPCRs used in the treatment of schizophrenia and other psychiatric disorders display promiscuous binding behavior linked to chronic toxicity and high-risk adverse effects. [16-18] We hypothesized that using a combination of physiochemical feature engineering with a feedforward neural network, predictive models can be trained for these specific GPCR subgroups that are more efficient and accurate than current state-of-the-art methods.. We combined normal mode analysis with deep learning to create a novel framework for the prediction of Class A GPCR/psychoactive drug interaction activities. Our deep learning classifier results in high classification accuracy (5-HT F1-score = 0.78; DRD F1-score = 0.93) and achieves a 45% reduction in model training time when structure-based feature selection is applied via guidance from an anisotropic network model (ANM). Additionally, we demonstrate the interpretability and application potential of our framework via evaluation of highly clinically relevant Class A GPCR/psychoactive drug interactions guided by our ANM results and deep learning predictions. Our model offers an increased range of applicability as compared to other methods due to accessible data compatibility requirements and low model complexity. While this model can be applied to a multitude of clinical applications, we have presented strong evidence for the impact of machine learning in the development of novel psychiatric therapeutics with improved safety and tolerability
    corecore