58,005 research outputs found

    Allo-network drugs: Extension of the allosteric drug concept to protein-protein interaction and signaling networks

    Get PDF
    Allosteric drugs are usually more specific and have fewer side effects than orthosteric drugs targeting the same protein. Here, we overview the current knowledge on allosteric signal transmission from the network point of view, and show that most intra-protein conformational changes may be dynamically transmitted across protein-protein interaction and signaling networks of the cell. Allo-network drugs influence the pharmacological target protein indirectly using specific inter-protein network pathways. We show that allo-network drugs may have a higher efficiency to change the networks of human cells than those of other organisms, and can be designed to have specific effects on cells in a diseased state. Finally, we summarize possible methods to identify allo-network drug targets and sites, which may develop to a promising new area of systems-based drug design

    Advocating the need of a systems biology approach for personalised prognosis and treatment of B-CLL patients

    Get PDF
    The clinical course of B-CLL is heterogeneous. This heterogeneity leads to a clinical dilemma: can we identify those patients who will benefit from early treatment and predict the survival? In recent years, mathematical modelling has contributed significantly in understanding the complexity of diseases. In order to build a mathematical model for determining prognosis of B-CLL one has to identify, characterise and quantify key molecules involved in the disease. Here we discuss the need and role of mathematical modelling in predicting B-CLL disease pathogenesis and suggest a new systems biology approach for a personalised therapy of B-CLL patients

    TLR3 Deficiency Leads to a Dysregulation in the Global Gene-Expression Profile in Murine Oviduct Epithelial Cells Infected with Chlamydia muridarum

    Get PDF
    OBJECTIVE Describe the implementation and effects of Mobile Acute Care for Elders (MACE) consultation at a Veterans Affairs Medical Center (VAMC). DESIGN Retrospective cohort analysis. INTERVENTION Veterans aged 65 or older who were admitted to the medicine service between October 1, 2012, and September 30, 2014, were screened for geriatric syndromes via review of medical records within 48 hours of admission. If the screen was positive, the MACE team offered the admitting team a same-day consultation involving comprehensive geriatric assessment and ongoing collaboration with the admitting team and supportive services to implement patient-centric recommendations for geriatric syndromes. RESULTS Veterans seen by MACE (n = 421) were compared with those with positive screens but without consultation (n = 372). The two groups did not significantly differ in age, comorbidity, sex, or race. All outcomes (30-day readmission, 30-day mortality, readmission costs) were in the expected direction for patients receiving MACE but did not reach statistical significance. Patients receiving MACE had lower odds of 30-day readmission (11.9% vs 14.8%; odds ratio [OR] = 0.82; 95% confidence interval [CI] = 0.54-1.25; p = .360) and 30-day mortality (5.5% vs 8.6%; OR = 0.64; CI = 0.36-1.12; p = .115), and they had lower 30-day readmission costs (MACE 15,502;CI=15,502; CI = 12,242-19,631;comparison=19,631; comparison = 18,335; CI = 14,641āˆ’14,641-22,962; p = .316) than those who did not receive MACE after adjusting for age and Charlson Comorbidity Index. CONCLUSION Our MACE consultation model for older veterans with geriatric syndromes leverages the limited supply of clinicians with expertise in geriatrics. Although not statistically significant in this study of 793 subjects, MACE patients had lower odds of 30-day readmission and mortality, and lower readmission costs. J Am Geriatr Soc 67:818ā€“824, 2019

    High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation

    Get PDF
    Leaf senescence is an essential developmental process that impacts dramatically on crop yields and involves altered regulation of thousands of genes and many metabolic and signaling pathways, resulting in major changes in the leaf. The regulation of senescence is complex, and although senescence regulatory genes have been characterized, there is little information on how these function in the global control of the process. We used microarray analysis to obtain a highresolution time-course profile of gene expression during development of a single leaf over a 3-week period to senescence. A complex experimental design approach and a combination of methods were used to extract high-quality replicated data and to identify differentially expressed genes. The multiple time points enable the use of highly informative clustering to reveal distinct time points at which signaling and metabolic pathways change. Analysis of motif enrichment, as well as comparison of transcription factor (TF) families showing altered expression over the time course, identify clear groups of TFs active at different stages of leaf development and senescence. These data enable connection of metabolic processes, signaling pathways, and specific TF activity, which will underpin the development of network models to elucidate the process of senescence

    Genome wide analysis of gene expression changes in skin from patients with type 2 diabetes

    Get PDF
    Non-healing chronic ulcers are a serious complication of diabetes and are a major healthcare problem. While a host of treatments have been explored to heal or prevent these ulcers from forming, these treatments have not been found to be consistently effective in clinical trials. An understanding of the changes in gene expression in the skin of diabetic patients may provide insight into the processes and mechanisms that precede the formation of non-healing ulcers. In this study, we investigated genome wide changes in gene expression in skin between patients with type 2 diabetes and non-diabetic patients using next generation sequencing. We compared the gene expression in skin samples taken from 27 patients (13 with type 2 diabetes and 14 non-diabetic). This information may be useful in identifying the causal factors and potential therapeutic targets for the prevention and treatment of diabetic related diseases

    Maml1 acts cooperatively with Gli proteins to regulate Sonic hedgheog signaling pathway

    Get PDF
    Sonic hedgehog (Shh) signaling is essential for proliferation of cerebellar granule cell progenitors (GCPs) and its misregulation is linked to various disorders, including cerebellar cancer medulloblastoma. The effects of Shh pathway are mediated by the Gli family of transcription factors, which controls the expression of a number of target genes, including Gli1. Here, we identify Mastermind-like 1 (Maml1) as a novel regulator of the Shh signaling since it interacts with Gli proteins, working as a potent transcriptional coactivator. Notably, Maml1 silencing results in a significant reduction of Gli target genes expression, with a negative impact on cell growth of NIH3T3 and Patched1āˆ’/āˆ’ mouse embryonic fibroblasts (MEFs), bearing a constitutively active Shh signaling. Remarkably, Shh pathway activity results severely compromised both in MEFs and GCPs deriving from Maml1āˆ’/āˆ’ mice with an impairment of GCPs proliferation and cerebellum development. Therefore Maml1āˆ’/āˆ’ phenotype mimics aspects of Shh pathway deficiency, suggesting an intrinsic requirement for Maml1 in cerebellum development. The present study shows a new role for Maml1 as a component of Shh signaling, which plays a crucial role in both development and tumorigenesis

    Systems analysis of host-parasite interactions.

    Get PDF
    Parasitic diseases caused by protozoan pathogens lead to hundreds of thousands of deaths per year in addition to substantial suffering and socioeconomic decline for millions of people worldwide. The lack of effective vaccines coupled with the widespread emergence of drug-resistant parasites necessitates that the research community take an active role in understanding host-parasite infection biology in order to develop improved therapeutics. Recent advances in next-generation sequencing and the rapid development of publicly accessible genomic databases for many human pathogens have facilitated the application of systems biology to the study of host-parasite interactions. Over the past decade, these technologies have led to the discovery of many important biological processes governing parasitic disease. The integration and interpretation of high-throughput -omic data will undoubtedly generate extraordinary insight into host-parasite interaction networks essential to navigate the intricacies of these complex systems. As systems analysis continues to build the foundation for our understanding of host-parasite biology, this will provide the framework necessary to drive drug discovery research forward and accelerate the development of new antiparasitic therapies

    Bloodstream form pre-adaptation to the tsetse fly in Trypanosoma brucei

    Get PDF
    African trypanosomes are sustained in the bloodstream of their mammalian hosts by their extreme capacity for antigenic variation. However, for life cycle progression, trypanosomes also must generate transmission stages called stumpy forms that are pre-adapted to survive when taken up during the bloodmeal of the disease vector, tsetse flies. These stumpy forms are rather different to the proliferative slender forms that maintain the bloodstream parasitaemia. Firstly, they are non proliferative and morphologically distinct, secondly, they show particular sensitivity to environmental cues that signal entry to the tsetse fly and, thirdly, they are relatively robust such that they survive the changes in temperature, pH and proteolytic environment encountered within the tsetse midgut. These characteristics require regulated changes in gene expression to pre-adapt the parasite and the use of environmental sensing mechanisms, both of which allow the rapid initiation of differentiation to tsetse midgut procyclic forms upon transmission. Interestingly, the generation of stumpy forms is also regulated and periodic in the mammalian blood, this being governed by a density-sensing mechanism whereby a parasite-derived signal drives cell cycle arrest and cellular development both to optimise transmission and to prevent uncontrolled parasite multiplication overwhelming the host.In this review we detail recent developments in our understanding of the molecular mechanisms that underpin the production of stumpy forms in the mammalian bloodstream and their signal perception pathways both in the mammalian bloodstream and upon entry into the tsetse fly. These discoveries are discussed in the context of conserved eukaryotic signalling and differentiation mechanisms. Further, their potential to act as targets for therapeutic strategies that disrupt parasite development either in the mammalian bloodstream or upon their transmission to tsetse flies is also discussed
    • ā€¦
    corecore