1,314 research outputs found

    Methods for protein complex prediction and their contributions towards understanding the organization, function and dynamics of complexes

    Get PDF
    Complexes of physically interacting proteins constitute fundamental functional units responsible for driving biological processes within cells. A faithful reconstruction of the entire set of complexes is therefore essential to understand the functional organization of cells. In this review, we discuss the key contributions of computational methods developed till date (approximately between 2003 and 2015) for identifying complexes from the network of interacting proteins (PPI network). We evaluate in depth the performance of these methods on PPI datasets from yeast, and highlight challenges faced by these methods, in particular detection of sparse and small or sub- complexes and discerning of overlapping complexes. We describe methods for integrating diverse information including expression profiles and 3D structures of proteins with PPI networks to understand the dynamics of complex formation, for instance, of time-based assembly of complex subunits and formation of fuzzy complexes from intrinsically disordered proteins. Finally, we discuss methods for identifying dysfunctional complexes in human diseases, an application that is proving invaluable to understand disease mechanisms and to discover novel therapeutic targets. We hope this review aptly commemorates a decade of research on computational prediction of complexes and constitutes a valuable reference for further advancements in this exciting area.Comment: 1 Tabl

    Towards the Identification of Protein Complexes and Functional Modules by Integrating PPI Network and Gene Expression Data

    Get PDF
    Background: Identification of protein complexes and functional modules from protein-protein interaction (PPI) networks is crucial to understanding the principles of cellular organization and predicting protein functions. In the past few years, many computational methods have been proposed. However, most of them considered the PPI networks as static graphs and overlooked the dynamics inherent within these networks. Moreover, few of them can distinguish between protein complexes and functional modules. Results: In this paper, a new framework is proposed to distinguish between protein complexes and functional modules by integrating gene expression data into protein-protein interaction (PPI) data. A series of time-sequenced subnetworks (TSNs) is constructed according to the time that the interactions were activated. The algorithm TSN-PCD was then developed to identify protein complexes from these TSNs. As protein complexes are significantly related to functional modules, a new algorithm DFM-CIN is proposed to discover functional modules based on the identified complexes. The experimental results show that the combination of temporal gene expression data with PPI data contributes to identifying protein complexes more precisely. A quantitative comparison based on f-measure reveals that our algorithm TSN-PCD outperforms the other previous protein complex discovery algorithms. Furthermore, we evaluate the identified functional modules by using ā€œBiological Processā€ annotated in GO (Gene Ontology). The validation shows that the identified functional modules are statistically significant in terms of ā€œBiological Processā€. More importantly, the relationship between protein complexes and functional modules are studied. Conclusions: The proposed framework based on the integration of PPI data and gene expression data makes it possible to identify protein complexes and functional modules more effectively. Moveover, the proposed new framework and algorithms can distinguish between protein complexes and functional modules. Our findings suggest that functional modules are closely related to protein complexes and a functional module may consist of one or multiple protein complexes. The program is available at http://netlab.csu.edu.cn/bioinfomatics/limin/DFM-CIN/index

    A comparison of the functional modules identified from time course and static PPI network data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cellular systems are highly dynamic and responsive to cues from the environment. Cellular function and response patterns to external stimuli are regulated by biological networks. A protein-protein interaction (PPI) network with static connectivity is dynamic in the sense that the nodes implement so-called functional activities that evolve in time. The shift from static to dynamic network analysis is essential for further understanding of molecular systems.</p> <p>Results</p> <p>In this paper, Time Course Protein Interaction Networks (TC-PINs) are reconstructed by incorporating time series gene expression into PPI networks. Then, a clustering algorithm is used to create functional modules from three kinds of networks: the TC-PINs, a static PPI network and a pseudorandom network. For the functional modules from the TC-PINs, repetitive modules and modules contained within bigger modules are removed. Finally, matching and GO enrichment analyses are performed to compare the functional modules detected from those networks.</p> <p>Conclusions</p> <p>The comparative analyses show that the functional modules from the TC-PINs have much more significant biological meaning than those from static PPI networks. Moreover, it implies that many studies on static PPI networks can be done on the TC-PINs and accordingly, the experimental results are much more satisfactory. The 36 PPI networks corresponding to 36 time points, identified as part of this study, and other materials are available at <url>http://bioinfo.csu.edu.cn/txw/TC-PINs.</url></p

    Identifying protein complexes and disease genes from biomolecular networks

    Get PDF
    With advances in high-throughput measurement techniques, large-scale biological data, such as protein-protein interaction (PPI) data, gene expression data, gene-disease association data, cellular pathway data, and so on, have been and will continue to be produced. Those data contain insightful information for understanding the mechanisms of biological systems and have been proved useful for developing new methods in disease diagnosis, disease treatment and drug design. This study focuses on two main research topics: (1) identifying protein complexes and (2) identifying disease genes from biomolecular networks. Firstly, protein complexes are groups of proteins that interact with each other at the same time and place within living cells. They are molecular entities that carry out cellular processes. The identification of protein complexes plays a primary role for understanding the organization of proteins and the mechanisms of biological systems. Many previous algorithms are designed based on the assumption that protein complexes are densely connected sub-graphs in PPI networks. In this research, a dense sub-graph detection algorithm is first developed following this assumption by using clique seeds and graph entropy. Although the proposed algorithm generates a large number of reasonable predictions and its f-score is better than many previous algorithms, it still cannot identify many known protein complexes. After that, we analyze characteristics of known yeast protein complexes and find that not all of the complexes exhibit dense structures in PPI networks. Many of them have a star-like structure, which is a very special case of the core-attachment structure and it cannot be identified by many previous core-attachment-structure-based algorithms. To increase the prediction accuracy of protein complex identification, a multiple-topological-structure-based algorithm is proposed to identify protein complexes from PPI networks. Four single-topological-structure-based algorithms are first employed to detect raw predictions with clique, dense, core-attachment and star-like structures, respectively. A merging and trimming step is then adopted to generate final predictions based on topological information or GO annotations of predictions. A comprehensive review about the identification of protein complexes from static PPI networks to dynamic PPI networks is also given in this study. Secondly, genetic diseases often involve the dysfunction of multiple genes. Various types of evidence have shown that similar disease genes tend to lie close to one another in various biomolecular networks. The identification of disease genes via multiple data integration is indispensable towards the understanding of the genetic mechanisms of many genetic diseases. However, the number of known disease genes related to similar genetic diseases is often small. It is not easy to capture the intricate gene-disease associations from such a small number of known samples. Moreover, different kinds of biological data are heterogeneous and no widely acceptable criterion is available to standardize them to the same scale. In this study, a flexible and reliable multiple data integration algorithm is first proposed to identify disease genes based on the theory of Markov random fields (MRF) and the method of Bayesian analysis. A novel global-characteristic-based parameter estimation method and an improved Gibbs sampling strategy are introduced, such that the proposed algorithm has the capability to tune parameters of different data sources automatically. However, the Markovianity characteristic of the proposed algorithm means it only considers information of direct neighbors to formulate the relationship among genes, ignoring the contribution of indirect neighbors in biomolecular networks. To overcome this drawback, a kernel-based MRF algorithm is further proposed to take advantage of the global characteristics of biological data via graph kernels. The kernel-based MRF algorithm generates predictions better than many previous disease gene identification algorithms in terms of the area under the receiver operating characteristic curve (AUC score). However, it is very time-consuming, since the Gibbs sampling process of the algorithm has to maintain a long Markov chain for every single gene. Finally, to reduce the computational time of the MRF-based algorithm, a fast and high performance logistic-regression-based algorithm is developed for identifying disease genes from biomolecular networks. Numerical experiments show that the proposed algorithm outperforms many existing methods in terms of the AUC score and running time. To summarize, this study has developed several computational algorithms for identifying protein complexes and disease genes from biomolecular networks, respectively. These proposed algorithms are better than many other existing algorithms in the literature

    Network Archaeology: Uncovering Ancient Networks from Present-day Interactions

    Get PDF
    Often questions arise about old or extinct networks. What proteins interacted in a long-extinct ancestor species of yeast? Who were the central players in the Last.fm social network 3 years ago? Our ability to answer such questions has been limited by the unavailability of past versions of networks. To overcome these limitations, we propose several algorithms for reconstructing a network's history of growth given only the network as it exists today and a generative model by which the network is believed to have evolved. Our likelihood-based method finds a probable previous state of the network by reversing the forward growth model. This approach retains node identities so that the history of individual nodes can be tracked. We apply these algorithms to uncover older, non-extant biological and social networks believed to have grown via several models, including duplication-mutation with complementarity, forest fire, and preferential attachment. Through experiments on both synthetic and real-world data, we find that our algorithms can estimate node arrival times, identify anchor nodes from which new nodes copy links, and can reveal significant features of networks that have long since disappeared.Comment: 16 pages, 10 figure

    Identifying Dynamic Protein Complexes Based on Gene Expression Profiles and PPI Networks

    Get PDF
    Identification of protein complexes fromprotein-protein interaction networks has become a key problem for understanding cellular life in postgenomic era. Many computational methods have been proposed for identifying protein complexes. Up to now, the existing computational methods are mostly applied on static PPI networks. However, proteins and their interactions are dynamic in reality. Identifying dynamic protein complexes is more meaningful and challenging. In this paper, a novel algorithm, named DPC, is proposed to identify dynamic protein complexes by integrating PPI data and gene expression profiles. According to Core-Attachment assumption, these proteins which are always active in the molecular cycle are regarded as core proteins. The protein-complex cores are identified from these always active proteins by detecting dense subgraphs. Final protein complexes are extended from the protein-complex cores by adding attachments based on a topological character of ā€œclosenessā€ and dynamic meaning. The protein complexes produced by our algorithm DPC contain two parts: static core expressed in all the molecular cycle and dynamic attachments short-lived.The proposed algorithm DPC was applied on the data of Saccharomyces cerevisiae and the experimental results show that DPC outperforms CMC, MCL, SPICi, HC-PIN, COACH, and Core-Attachment based on the validation of matching with known complexes and hF-measures

    Mining Biological Networks towards Protein complex Detection and Gene-Disease Association

    Get PDF
    Large amounts of biological data are continuously generated nowadays, thanks to the advancements of high-throughput experimental techniques. Mining valuable knowledge from such data still motivates the design of suitable computational methods, to complement the experimental work which is often bound by considerable time and cost requirements. Protein complexes or groups of interacting proteins, are key players in most cellular events. The identification of complexes not only allows to better understand normal biological processes but also to uncover Disease-triggering malfunctions. Ultimately, findings in this research branch can highly enhance the design of effective medical treatments. The aim of this research is to detect protein complexes in protein-protein interaction networks and to associate the detected entities to diseases. The work is divided into three main objectives: first, develop a suitable method for the identification of protein complexes in static interaction networks; second, model the dynamic aspect of protein interaction networks and detect complexes accordingly; and third, design a learning model to link proteins, and subsequently protein complexes, to diseases. In response to these objectives, we present, ProRank+, a novel complex-detection approach based on a ranking algorithm and a merging procedure. Then, we introduce DyCluster, which uses gene expression data, to model the dynamics of the interaction networks, and we adapt the detection algorithm accordingly. Finally, we integrate network topology attributes and several biological features of proteins to form a classification model for gene-disease association. The reliability of the proposed methods is supported by various experimental studies conducted to compare them with existing approaches. Pro Rank+ detects more protein complexes than other state-of-the-art methods. DyCluster goes a step further and achieves a better performance than similar techniques. Then, our learning model shows that combining topological and biological features can greatly enhance the gene-disease association process. Finally, we present a comprehensive case study of breast cancer in which we pinpoint disease genes using our learning model; subsequently, we detect favorable groupings of those genes in a protein interaction network using the Pro-rank+ algorithm

    Hot-spot analysis for drug discovery targeting protein-protein interactions

    Get PDF
    Introduction: Protein-protein interactions are important for biological processes and pathological situations, and are attractive targets for drug discovery. However, rational drug design targeting protein-protein interactions is still highly challenging. Hot-spot residues are seen as the best option to target such interactions, but their identification requires detailed structural and energetic characterization, which is only available for a tiny fraction of protein interactions. Areas covered: In this review, the authors cover a variety of computational methods that have been reported for the energetic analysis of protein-protein interfaces in search of hot-spots, and the structural modeling of protein-protein complexes by docking. This can help to rationalize the discovery of small-molecule inhibitors of protein-protein interfaces of therapeutic interest. Computational analysis and docking can help to locate the interface, molecular dynamics can be used to find suitable cavities, and hot-spot predictions can focus the search for inhibitors of protein-protein interactions. Expert opinion: A major difficulty for applying rational drug design methods to protein-protein interactions is that in the majority of cases the complex structure is not available. Fortunately, computational docking can complement experimental data. An interesting aspect to explore in the future is the integration of these strategies for targeting PPIs with large-scale mutational analysis.This work has been funded by grants BIO2016-79930-R and SEV-2015-0493 from the Spanish Ministry of Economy, Industry and Competitiveness, and grant EFA086/15 from EU Interreg V POCTEFA. M Rosell is supported by an FPI fellowship from the Severo Ochoa program. The authors are grateful for the support of the the Joint BSC-CRG-IRB Programme in Computational Biology.Peer ReviewedPostprint (author's final draft
    • ā€¦
    corecore