1,143 research outputs found

    Are Web Applications Ready for Parallelism?

    Get PDF
    In recent years, web applications have become pervasive. Their backbone is JavaScript, the only programming language supported by all major web browsers. Most browsers run on desktop or mobile devices with parallel hardware. However, JavaScript is by design sequential, and current web applications make little use of hardware parallelism. Are web applications ready to exploit parallel hardware? \ \ To answer this question we take a two-step approach. First, we survey 174 web developers regarding the potential and challenges of using parallelism. Then, we study the performance and computation shape of a set of web applications that are representative for the emerging web. We identify performance bottlenecks and examine memory access patterns to determine possible data parallelism. \ \ Our findings indicate that emerging web applications do have latent data parallelism, and JavaScript developers\u27 programming style are not a significant impediment to exploiting this parallelism

    Advances in Engineering Software for Multicore Systems

    Get PDF
    The vast amounts of data to be processed by today’s applications demand higher computational power. To meet application requirements and achieve reasonable application performance, it becomes increasingly profitable, or even necessary, to exploit any available hardware parallelism. For both new and legacy applications, successful parallelization is often subject to high cost and price. This chapter proposes a set of methods that employ an optimistic semi-automatic approach, which enables programmers to exploit parallelism on modern hardware architectures. It provides a set of methods, including an LLVM-based tool, to help programmers identify the most promising parallelization targets and understand the key types of parallelism. The approach reduces the manual effort needed for parallelization. A contribution of this work is an efficient profiling method to determine the control and data dependences for performing parallelism discovery or other types of code analysis. Another contribution is a method for detecting code sections where parallel design patterns might be applicable and suggesting relevant code transformations. Our approach efficiently reports detailed runtime data dependences. It accurately identifies opportunities for parallelism and the appropriate type of parallelism to use as task-based or loop-based

    Modernizing Parallel Code with Pattern Analysis

    Get PDF

    Data-centric Performance Measurement and Mapping for Highly Parallel Programming Models

    Get PDF
    Modern supercomputers have complex features: many hardware threads, deep memory hierarchies, and many co-processors/accelerators. Productively and effectively designing programs to utilize those hardware features is crucial in gaining the best performance. There are several highly parallel programming models in active development that allow programmers to write efficient code on those architectures. Performance profiling is a very important technique in the development to achieve the best performance. In this dissertation, I proposed a new performance measurement and mapping technique that can associate performance data with program variables instead of code blocks. To validate the applicability of my data-centric profiling idea, I designed and implemented a profiler for PGAS and CUDA. For PGAS, I developed ChplBlamer, for both single-node and multi-node Chapel programs. My tool also provides new features such as data-centric inter-node load imbalance identification. For CUDA, I developed CUDABlamer for GPU-accelerated applications. CUDABlamer also attributes performance data to program variables, which is a feature that was not found in any previous CUDA profilers. Directed by the insights from the tools, I optimized several widely-studied benchmarks and significantly improved program performance by a factor of up to 4x for Chapel and 47x for CUDA kernels

    Separation logic for high-level synthesis

    Get PDF
    High-level synthesis (HLS) promises a significant shortening of the digital hardware design cycle by raising the abstraction level of the design entry to high-level languages such as C/C++. However, applications using dynamic, pointer-based data structures remain difficult to implement well, yet such constructs are widely used in software. Automated optimisations that leverage the memory bandwidth of dedicated hardware implementations by distributing the application data over separate on-chip memories and parallelise the implementation are often ineffective in the presence of dynamic data structures, due to the lack of an automated analysis that disambiguates pointer-based memory accesses. This thesis takes a step towards closing this gap. We explore recent advances in separation logic, a rigorous mathematical framework that enables formal reasoning about the memory access of heap-manipulating programs. We develop a static analysis that automatically splits heap-allocated data structures into provably disjoint regions. Our algorithm focuses on dynamic data structures accessed in loops and is accompanied by automated source-to-source transformations which enable loop parallelisation and physical memory partitioning by off-the-shelf HLS tools. We then extend the scope of our technique to pointer-based memory-intensive implementations that require access to an off-chip memory. The extended HLS design aid generates parallel on-chip multi-cache architectures. It uses the disjointness property of memory accesses to support non-overlapping memory regions by private caches. It also identifies regions which are shared after parallelisation and which are supported by parallel caches with a coherency mechanism and synchronisation, resulting in automatically specialised memory systems. We show up to 15x acceleration from heap partitioning, parallelisation and the insertion of the custom cache system in demonstrably practical applications.Open Acces

    A Fine-grained Performance Model for GPU Architectures

    Get PDF
    The increasing programmability, performance, and cost/effectiveness of GPUs have led to a widespread use of such many-core architectures to accelerate general purpose applications. Nevertheless, tuning applications to efficiently exploit the GPU potentiality is a very challenging task, especially for inexperienced programmers. This is due to the difficulty of developing a SW application for the specific GPU architectural configuration, which includes managing the memory hierarchy and optimizing the execution of thousands of concurrent threads while maintaining the semantic correctness of the application. Even though several profiling tools exist, which provide programmerswith a large number of metrics and measurements, it is often difficult to interpret such information for effectively tuning the application. This paper presents a performance model that allows accurately estimating the potential performance of the application under tuning on a given GPU device and, at the same time, it provides programmers with interpretable profiling hints. The paper shows the results obtained by applying the proposedmodel for profiling commonly used primitives and real codes
    corecore