135 research outputs found

    Requirement-oriented core technological components’ identification based on SAO analysis

    Full text link
    © 2017, Akadémiai Kiadó, Budapest, Hungary. Technologies play an important role in the survival and development of enterprises. Understanding and monitoring the core technological components (e.g., technology process, operation method, function) of a technology is an important issue for researchers to develop R&D policy and manage product competitiveness. However, it is difficult to identify core technological components from a mass of terms, and we may experience some difficulties with describing complete technical details and understanding the terms-based results. This paper proposes a Subject-Action-Object (SAO)-based method, in which (1) a syntax-based approach is constructed to extract the SAO structures describing the function, relationship and operation in specified topics; (2) a systematic method is built to extract and screen technological components from SAOs; and (3) we propose a “relevance indicator” to calculate the relevance of the technological components to requirements, and finally identify core technological components based on this indicator. Based on the considerations for requirements and novelty, the core technological components identified have great market potential and can be useful in monitoring and forecasting new technologies. An empirical study of graphene is performed to demonstrate the proposed method. The resulting knowledge may hold interest for R&D management and corporate technology strategies in practice

    Discovering shifts in competitive strategies in probiotics, accelerated with TechMining

    Full text link
    [EN] Profiling the technological strategy of different competitors is a key element for the companies in a given industry, as well to technology planners and R&D strategists. The analysis of the patent portfolio of a company as well as its evolution in the time line is of interest for technology analysts and decision makers. However, the need for the participation of experts in the field of a company as well as patent specialists, slows down the process. Bibliometrics and text mining techniques contribute to the interpretation of specialists. The present paper tries to offer a step by step procedure to analyze the technology strategy of several companies through the analysis of their portfolio claims, combined with the use of TechMining with the help of a text mining tool. The procedure, complemented with a semantic TRIZ analysis provides key insights in disclosing the technological analysis of some competitors in the field of probiotics for livestock health. The results show interesting shifts in the key probiotic and prebiotic ingredients for which companies claim protection and therefore offers clues about their technology intention in the life sciences industry in a more dynamic, convenient and simple way.The authors would like to thank the contribution of the research institute IRTA, to the TRIZ company triz XXI and to Fernando Palop and their wise insights and guidance. The authors thank the usage of Search Technology s VantagePoint and IHS-Markit s Goldfire.Vicente Gomila, JM.; Palli, A.; De La Calle, B.; Artacho Ramírez, MÁ.; Jimémez, S. (2017). Discovering shifts in competitive strategies in probiotics, accelerated with TechMining. Scientometrics. 111(3):1907-1923. https://doi.org/10.1007/s11192-017-2339-5S190719231113Abbas, A., Zhang, L., & Khan, S. (2014). A literature review on the state-of-the-art in patent analysis. World Patent Information, 37, 3–13.Allen, H., Levine, T., Bandrick, M., & Casey, T. (2012). Treatment, promotion, commotion: Antibiotic alternatives in food-producing animals. Trends in Microbiology, 21(3), 114–119.Animal Task Force. (2013). Research & innovation for a sustainable livestock sector in Europe. http://www.animaltaskforce.eu/Portals/0/ATF/horizon2020/ATF%20white%20paper%20Research%20priorities%20for%20a%20sustainable%20livestock%20sector%20in%20Europe.pdf . Accessed September 4, 2016.Abramson, D. (2011). Patent strategies for life sciences companies to navigate the changing patent landscape. Journal of Commercial Biotechnology, 17, 358–364.Banan-Mwine Daliri, E., & Lee, B. H. (2015). New perspectives on probiotics and disease. Food Science and Human Wellness, 4, 56–65.Bubela, T., Gold, R., Gregory, G., Cahoy, D., & Castle, D. (2013). Patent landscaping for life sciences innovation: Toward consistent and transparent practices. Nature Biotechnology, 31, 202–206.Chih-Hung, H. (2013). Patent value assessment and commercialization strategy. Technology forecasting & Social Change, 80, 307–319.Choi, S., Yoon, J., Kim, K., Lee, J. Y., & Kim, C.-H. (2011). SAO network analysis of patents for technology trends identification: A case study of polymer electrolyte membrane technology in proton exchange membrane fuel cells. Scientometrics, 88, 863–883.Collins, M. D., & Gibson, G. (1999). Probiotics, prebiotics, and synbiotics: Approaches for modulating the microbial ecology of the gut. American Journal of Clinical Nutrition, 69(suppl), 1052S–1057S.Ernst, H. (1998). Patent portfolio for strategic technology management. Journal of Engineering Technology Management, 15, 279–308.Ferraro, G., & Wanner, L. (2011). Towards the derivation of verbal content relations from patent claims using deep syntactic structures. Knowledge-Based Systems, 24, 1233–1244.Foligné, B., Daniel, C., & Pot, B. (2013). Probiotics from research to market: The possibilities, risks and challenges. Current Opinion in Microbiology, 16(3), 284–292.Gerken, J., & Moehrle, M. (2012). A new instrument for technology monitoring: Novelty in patents measured by semantic patent analysis. Scientometrics, 91, 645–670.Grant, R. (2006). Contemporary strategic analysis (5th ed.). ISBN 1-405-1999-3.Grant, E., Van den Hof, M., & Gold, R. (2014). Patent landscape analysis: A methodology in need of harmonized standards. World Patent Information, 39, 3–10.He, J., Yamanaka, T., & Kano, S. (2016). Mapping university receptor based on claim embodiment quantitative analysis: A study of 31 cases form the University of Tokio. World Patent Information, 46, 49–55.IHS Goldfire. www.ihsmarkit.com . Accessed November 2016.Kaushik, G. (Ed.) (2015). Applied environmental biotechnology: Present scenario and future trends. Springer. ISBN 978-81-322-2122-7.Kim, B., Miller, D., & Mahoney, J. (2016). The impact of the timing of patents on innovation performance. Research Policy, 45(2016), 914–928.Kume, H. (2010). From low power to no power through energy harvesting: Powering up the battery-free world. Nikkei Elctronics Asia; October 31, 2010; Accessed November 2011.Lanjouw, J., & Schankerman, M. (1999). The quality of ideas: Measuring innovation with multiple indicators. 7345. National Bureau for Economic Research, Cambridge, MA, USA. http://www.nber.org . Accessed September 2016.Lee, C., Kim, J., Kwon, O., & Woo, H. G. (2016). Stochastic technology life cycle analysis using multiple patent indicators. Technological Forecasting and Social Change, 106(2016), 53–64.Mogee, M. E. (1991). Using patent data for technology analysis and planning. Research-Technology Management, 34(4), 43–49.Niwa, S. (2016). Patent claims and economic growth. Economic Modelling, 54, 377–381.Noh, H., Jo, Y., & Lee, S. (2015). Keyword selection and processing strategy for applying text mining to patent analysis. World Patent Information, 42, 4348–4360.O’Callaghan, T. F., Ross, R. P., Stanton, C., & Clarke, G. (2016). The gut micorbiome as a virtual endocrine organ with implicaitons for farm and domestic animal endocrinology. Domestic Animal Endocrinology, 56, S44–S55.Pargaonkar, Y. (2016). Leveraging patent landscape analysis and IP competitive intelligence. World Patent Information, 45, 10–20.Park, H., Yoon, J., & Kim, K. (2012). Identifiying patent infringement using SAO based semantic technological similarities. Scientometrics, 90, 515–529.Park, H., Yoon, J., & Kim, K. (2013). Identification and evaluation of corporations for merger and acquisition strategies using patent information and text mining. Scientometrics, 97, 883–909.Porter, M. (2008). The five competitive forces that shape strategy. Harvard Business Review. January 2008. 1–17. Reprint R0801E. www.hbrreprints.org .Porter, A. L., & Cunningham, S. (2005). Tech Mining. Hoboken: Wiley Interscience.Porter, A., & Newman, N. (2011). Mining external R&D. Technovation, 31, 171–176.Regulation (EC) No 1831/2003 of the European Parliament and of the Council of 22 September 2003 on additives for use in animal nutrition Regulation (EC) No 1831/2003 of the European Parliament and of the Council. http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32003R1831 .Rose, C., Cronin, J., & Schwartz, R. (2007). Communicating the value of your intellectual property to Wall Street. Research Technology Management, 50(2), 36–40.Schrezenmeir, J., & De Vrese, M. (2001). Probiotics, prebiotics, and synbiotics—Approaching a definition. The American Journal of Clinical Nutrition, 73(2), 361s–364s.Soranzo, B., Nosella, A., & Filippini, R. (2016). Managing firm patents: A bibliometric investigation into the state of the art. Journal of Engineering and Technology Management, 42, 15–30.Teece, D. J. (1986). Profiting from technological innovation: Implications for integration, collaboration, licensing and public policy. Research Policy, 15, 285–305.The patent guide; A handbook for analyzing and interpreting patent data. UK Intellectual patent office.Tong, X., & Frame, D. (1994). Technological performance with patent claims data. Research Policy, 23, 133–141.VantagePoint. www.theVantagePoint.com . Accessed September 20, 2016.Verberne, S., D’hondt, E., & Oostdijk, N. (2010). Quantifying the challenges in parsing patent claims. In The 1st international workshop on Advances in Patent Information Retrieval (AsPIRe’10), Milton Keynes, UK.Verbitsky, M. (2004). Semantic TRIZ, triz-journal.com. http://www.triz-journal.com/archives/2004/ .Vicente-Gomila, J. M. (2014). The contribution of syntactic-semantic approach to the search for complimentary literatures for scientific or technical discovery. Scientometrics. doi: 10.1007/s11192-014-1299-2 .Vicente-Gomila, J. M., & Palop, F. (2013). Combining tech-mining and semantic-TRIZ for a faster and better technology analysis: A case in energy storage systems. Technology Analysis & Strategic Management, 25(6), 725–743.Wang, M., Chiu, T., & Chen, W. (2009). Exploring potential R&D collaborators based on patent portfolio analysis: The case of biosensors. In PICMET 2009 Proceedings, August 2–6, Portland, Oregon, USA.Wang, J., Lu, F., & Loh, H. (2015). A two-level parser for patent claim parsing. Advanced Engineering Informatics, 29, 431–439.Weenen, T. C., Pronker, E. S., Commandeur, H. R., & Claasen, E. (2013). Patenting in the European medical nutrition industry: Trends, opportunities and strategies. PharmaNutrition, 1, 13–21.Xie, Z., & Miyazaki, K. (2013). Evaluating the effectiveness of keyword search strategy for patent identification. World Patent Information, 35(1), 20–30.Yang, Y., & Choct, M. (2009). Dietary modulation of gut microflora in broiler chickens: A review of the role of six kinds of alternatives to in-feed antibiotics. World’s Poultry Science Journal, 65, 97–114.Yang, S.-Y., & Soo, V.-W. (2012). Extract conceptual graphs from plain texts in patent claims. Engineering Applications of Artificial Intelligence, 25, 874–887.Yoon, J., Park, H., & Kim, K. (2013). Identifying technological competition trends for R&D planning using dynamic patent maps: SAO-bassed content analysis. Scientometrics, 94, 313–331

    Opportunity Identification for New Product Planning: Ontological Semantic Patent Classification

    Get PDF
    Intelligence tools have been developed and applied widely in many different areas in engineering, business and management. Many commercialized tools for business intelligence are available in the market. However, no practically useful tools for technology intelligence are available at this time, and very little academic research in technology intelligence methods has been conducted to date. Patent databases are the most important data source for technology intelligence tools, but patents inherently contain unstructured data. Consequently, extracting text data from patent databases, converting that data to meaningful information and generating useful knowledge from this information become complex tasks. These tasks are currently being performed very ineffectively, inefficiently and unreliably by human experts. This deficiency is particularly vexing in product planning, where awareness of market needs and technological capabilities is critical for identifying opportunities for new products and services. Total nescience of the text of patents, as well as inadequate, unreliable and untimely knowledge derived from these patents, may consequently result in missed opportunities that could lead to severe competitive disadvantage and potentially catastrophic loss of revenue. The research performed in this dissertation tries to correct the abovementioned deficiency with an approach called patent mining. The research is conducted at Finex, an iron casting company that produces traditional kitchen skillets. To \u27mine\u27 pertinent patents, experts in new product development at Finex modeled one ontology for the required product features and another for the attributes of requisite metallurgical enabling technologies from which new product opportunities for skillets are identified by applying natural language processing, information retrieval, and machine learning (classification) to the text of patents in the USPTO database. Three main scenarios are examined in my research. Regular classification (RC) relies on keywords that are extracted directly from a group of USPTO patents. Ontological classification (OC) relies on keywords that result from an ontology developed by Finex experts, which is evaluated and improved by a panel of external experts. Ontological semantic classification (OSC) uses these ontological keywords and their synonyms, which are extracted from the WordNet database. For each scenario, I evaluate the performance of three classifiers: k-Nearest Neighbor (k-NN), random forest, and Support Vector Machine (SVM). My research shows that OSC is the best scenario and SVM is the best classifier for identifying product planning opportunities, because this combination yields the highest score in metrics that are generally used to measure classification performance in machine learning (e.g., ROC-AUC and F-score). My method also significantly outperforms current practice, because I demonstrate in an experiment that neither the experts at Finex nor the panel of external experts are able to search for and judge relevant patents with any degree of effectiveness, efficiency or reliability. This dissertation provides the rudiments of a theoretical foundation for patent mining, which has yielded a machine learning method that is deployed successfully in a new product planning setting (Finex). Further development of this method could make a significant contribution to management practice by identifying opportunities for new product development that have been missed by the approaches that have been deployed to date

    Patent\u27s New Salience

    Get PDF
    The vast majority of patents do not matter. They are almost never enforced or licensed and, in consequence, are almost always ignored. This is a well-accepted feature of the patent system and has a tremendous impact on patent policy. In particular, while there are many aspects of patent law that are potentially troubling—including grants of unmerited patents, high transaction costs in obtaining necessary patent licenses, and patents’ potential to block innovation and hinder economic growth—these problems may be insignificant in practice because patents are under-enforced and routinely infringed without consequence. This Article argues that technological developments are greatly increasing the salience of patents by making patents easier and cheaper to find and enforce. These developments—including private platforms’ adjudication systems and AI-driven patent analytics—profoundly impact how the patent system functions and upend the system’s present dependence on under-enforcement and ignorance. Where most patents could previously be safely disregarded, formerly forgotten patents now matter. This Article makes four contributions to the literature. First, this Article explores the technology that is rendering patents newly salient and explains how this alters basic assumptions underlying the patent system. Second, this Article demonstrates that although new technology is increasing the number of patents that can be reviewed and enforced, this transformation sometimes decreases the depth of patent analysis. Because it is difficult to draw conclusions about patent scope or validity without in-depth analysis, this omission means that technological review of patents may give patents unmerited influence. Third, this Article shows a sharp divergence between public policy goals and private use of patents. For several decades, the courts and Congress have been reforming patent policy to decrease the impact of patents to alleviate concerns that patent owners hinder innovation by others. This Article demonstrates, in clear contrast to this goal, an increase in patent salience that is due exclusively to the use of private platforms and technologies. Further, the use of private platforms to find, analyze, and enforce patents creates the risk that choices made by companies and software developers will displace substantive patent law. Finally, this Article suggests policy reform, including ways to improve technology and patents and adjusted approaches to patent doctrine and theory
    corecore