6,489 research outputs found

    Scaling Green-Kubo relation and application to three aging systems

    Get PDF
    The Green-Kubo formula relates the spatial diffusion coefficient to the stationary velocity autocorrelation function. We derive a generalization of the Green-Kubo formula valid for systems with long-range or nonstationary correlations for which the standard approach is no longer valid. For the systems under consideration, the velocity autocorrelation function ⟨v(t+τ)v(t)⟩\langle v(t+\tau) v(t) \rangle asymptotically exhibits a certain scaling behavior and the diffusion is anomalous ⟨x2(t)⟩≃2Dνtν\langle x^2(t) \rangle \simeq 2 D_\nu t^{\nu}. We show how both the anomalous diffusion coefficient DνD_\nu and exponent ν\nu can be extracted from this scaling form. Our scaling Green-Kubo relation thus extends an important relation between transport properties and correlation functions to generic systems with scale invariant dynamics. This includes stationary systems with slowly decaying power law correlations as well as aging systems, whose properties depend on the the age of the system. Even for systems that are stationary in the long time limit, we find that the long time diffusive behavior can strongly depend on the initial preparation of the system. In these cases, the diffusivity DνD_{\nu} is not unique and we determine its values for a stationary respectively nonstationary initial state. We discuss three applications of the scaling Green-Kubo relation: Free diffusion with nonlinear friction corresponding to cold atoms diffusing in optical lattices, the fractional Langevin equation with external noise recently suggested to model active transport in cells and the L\'evy walk with numerous applications, in particular blinking quantum dots. These examples underline the wide applicability of our approach, which is able to treat very different mechanisms of anomalous diffusion.Comment: 16 pages, 6 figures, 1 tabl

    Improvement of speech recognition by nonlinear noise reduction

    Full text link
    The success of nonlinear noise reduction applied to a single channel recording of human voice is measured in terms of the recognition rate of a commercial speech recognition program in comparison to the optimal linear filter. The overall performance of the nonlinear method is shown to be superior. We hence demonstrate that an algorithm which has its roots in the theory of nonlinear deterministic dynamics possesses a large potential in a realistic application.Comment: see urbanowicz.org.p

    Computer model calibration with large non-stationary spatial outputs: application to the calibration of a climate model

    Get PDF
    Bayesian calibration of computer models tunes unknown input parameters by comparing outputs with observations. For model outputs that are distributed over space, this becomes computationally expensive because of the output size. To overcome this challenge, we employ a basis representation of the model outputs and observations: we match these decompositions to carry out the calibration efficiently. In the second step, we incorporate the non-stationary behaviour, in terms of spatial variations of both variance and correlations, in the calibration. We insert two integrated nested Laplace approximation-stochastic partial differential equation parameters into the calibration. A synthetic example and a climate model illustration highlight the benefits of our approach

    Cointegration and common factors

    Get PDF
    Alternative common factors representations for cointegrated vectors are studied. It is shown that dynamic factor models produce as particular cases the alternative common trend representations for cointegrated variables available in the literature, including the one of Stock and Watson(1988). Furthermore, it is proved that common factor representations with I(1) components imply cointegration. A more efficient procedure for fmding the numbers of cointegrated vectors based on this dynamic factors model is suggested

    The Effect of Nonstationarity on Models Inferred from Neural Data

    Full text link
    Neurons subject to a common non-stationary input may exhibit a correlated firing behavior. Correlations in the statistics of neural spike trains also arise as the effect of interaction between neurons. Here we show that these two situations can be distinguished, with machine learning techniques, provided the data are rich enough. In order to do this, we study the problem of inferring a kinetic Ising model, stationary or nonstationary, from the available data. We apply the inference procedure to two data sets: one from salamander retinal ganglion cells and the other from a realistic computational cortical network model. We show that many aspects of the concerted activity of the salamander retinal neurons can be traced simply to the external input. A model of non-interacting neurons subject to a non-stationary external field outperforms a model with stationary input with couplings between neurons, even accounting for the differences in the number of model parameters. When couplings are added to the non-stationary model, for the retinal data, little is gained: the inferred couplings are generally not significant. Likewise, the distribution of the sizes of sets of neurons that spike simultaneously and the frequency of spike patterns as function of their rank (Zipf plots) are well-explained by an independent-neuron model with time-dependent external input, and adding connections to such a model does not offer significant improvement. For the cortical model data, robust couplings, well correlated with the real connections, can be inferred using the non-stationary model. Adding connections to this model slightly improves the agreement with the data for the probability of synchronous spikes but hardly affects the Zipf plot.Comment: version in press in J Stat Mec

    Qubit quantum-dot sensors: noise cancellation by coherent backaction, initial slips, and elliptical precession

    Full text link
    We theoretically investigate the backaction of a sensor quantum dot with strong local Coulomb repulsion on the transient dynamics of a qubit that is probed capacitively. We show that the measurement backaction induced by the noise of electron cotunneling through the sensor is surprisingly mitigated by the recently identified coherent backaction [PRB 89, 195405] arising from quantum fluctuations. This renormalization effect is missing in semiclassical stochastic fluctuator models and typically also in Born-Markov approaches, which try to avoid the calculation of the nonstationary, nonequilibrium state of the qubit plus sensor. Technically, we integrate out the current-carrying electrodes to obtain kinetic equations for the joint, nonequilibrium detector-qubit dynamics. We show that the sensor-current response, level renormalization, cotunneling, and leading non-Markovian corrections always appear together and cannot be turned off individually in an experiment or ignored theoretically. We analyze the backaction on the reduced qubit state - capturing the full non-Markovian effects imposed by the sensor quantum dot on the qubit - by applying a Liouville-space decomposition into quasistationary and rapidly decaying modes. Importantly, the sensor cannot be eliminated completely even in the simplest high-temperature, weak-measurement limit: The qubit state experiences an initial slip that persists over many qubit cycles and depends on the initial preparation of qubit plus sensor quantum dot. A quantum-dot sensor can thus not be modeled as a 'black box' without accounting for its dynamical variables. We furthermore find that the Bloch vector relaxes (T1) along an axis that is not orthogonal to the plane in which the Bloch vector dephases (T2), blurring the notions of T1 and T2 times. Finally, the precessional motion of the Bloch vector is distorted into an ellipse in the tilted dephasing plane.Comment: This is the version published in Phys. Rev.
    • …
    corecore