424 research outputs found

    A preliminary safety evaluation of route guidance comparing different MMI concepts

    Get PDF

    Improving Environment Detection by Behaviour Association for Context Adaptive Navigation

    Get PDF
    Navigation and positioning systems depend on both the operating environment and the behavior of the host vehicle or user. The environment determines the type and quality of radio signals available for positioning, and the behavior can contribute additional information to the navigation solution. In order to operate across different contexts, a context‐adaptive navigation solution is required to detect the operating contexts and adopt different positioning techniques accordingly. This paper focuses on determining both environments and behaviors from smartphone sensors, serving for a context‐adaptive navigation system. Behavioral contexts cover both human activities and vehicle motions. The performance of behavior recognition in this paper is improved by feature selection and a connectivity‐dependent filter. Environmental contexts are detected from global navigation satellite system (GNSS) measurements. They are detected by using a probabilistic support vector machine, followed by a hidden Markov model for time‐domain filtering. The paper further investigates how behaviors can assist within the processes of environment detection. Finally, the proposed context‐determination algorithms are tested in a series of multicontext scenarios, showing that the proposed context association mechanism can effectively improve the accuracy of environment detection to more than 95% for pedestrian and more than 90% for vehicle

    Deep Learning Localization for Self-driving Cars

    Get PDF
    Identifying the location of an autonomous car with the help of visual sensors can be a good alternative to traditional approaches like Global Positioning Systems (GPS) which are often inaccurate and absent due to insufficient network coverage. Recent research in deep learning has produced excellent results in different domains leading to the proposition of this thesis which uses deep learning to solve the problem of localization in smart cars with visual data. Deep Convolutional Neural Networks (CNNs) were used to train models on visual data corresponding to unique locations throughout a geographic location. In order to evaluate the performance of these models, multiple datasets were created from Google Street View as well as manually by driving a golf cart around the campus while collecting GPS tagged frames. The efficacy of the CNN models was also investigated across different weather/light conditions. Validation accuracies as high as 98% were obtained from some of these models, proving that this novel method has the potential to act as an alternative or aid to traditional GPS based localization methods for cars. The root mean square (RMS) precision of Google Maps is often between 2-10m. However, the precision required for the navigation of self-driving cars is between 2-10cm. Empirically, this precision has been achieved with the help of different error-correction systems on GPS feedback. The proposed method was able to achieve an approximate localization precision of 25 cm without the help of any external error correction system
    corecore