51 research outputs found

    Interpreting Pedestrian Behaviour by Visualising and Clustering Movement Data

    Get PDF
    Recent technological advances have increased the quantity of movement data being recorded. While valuable knowledge can be gained by analysing such data, its sheer volume creates challenges. Geovisual analytics, which helps the human cognition process by using tools to reason about data, offers powerful techniques to resolve these challenges. This paper introduces such a geovisual analytics environment for exploring movement trajectories, which provides visualisation interfaces, based on the classic space-time cube. Additionally, a new approach, using the mathematical description of motion within a space-time cube, is used to determine the similarity of trajectories and forms the basis for clustering them. These techniques were used to analyse pedestrian movement. The results reveal interesting and useful spatiotemporal patterns and clusters of pedestrians exhibiting similar behaviour

    The Potential for Augmented Reality to Bring Balance betweenthe Ease of Pedestrian Navigation and the Acquisition of Spatial Knowledge

    Get PDF
    Being completely lost in an unfamiliar environment can be inconvenient, stressful and, at times, even dangerous. Maps are the traditional tools used for guidance but many people find maps difficult to use. In recent years, new tools like outdoor Augmented Reality (AR) have become available which allow virtual navigation cues to be directly overlaid on the real world, potentially overcoming the limitations of maps. However, it has been hypothesized that lower effort invested in processing navigation guidance may lead to diminished spatial knowledge (SK) thereby making users of such navigation tools far more vulnerable to getting lost should the tools fail for any reason. This thesis explores the research question of how AR and maps compare as tools for pedestrian navigation guidance as well as for SK acquisition and if there is a potential for AR tools be developed that would balance the two. We present a series of studies to better understand the consequences of using AR in a pedestrian navigation tool. The first two studies compared time-on-task performance and user preferences for AR and Map navigation interfaces on an outdoor navigation task. The results were not aligned with expectations, which led us to build a controlled testing environment for comparing AR and map navigation. Using this simulated setting, our third study verified the assumption that AR can indeed result in more efficient navigation performance and it supported the hypothesis that this would come at the cost of weaker SK. In our fourth study, we used a dual task design to compare the relative cognitive resources required by map and AR interfaces. The quantitative data collected indicated that users could potentially accept additional workload designed to improve SK without incurring significantly more effort. Our fifth and final study explored an interface with additional AR cues that could potentially balance navigation guidance with SK acquisition. The contributions of this thesis include insights into performance issues relating to AR, a classification of user types based on navigation tool usage behavior, a testbed for simulating perfect AR tracking in a virtual setting, objective measures for determining route knowledge, the capacity that pedestrian navigation tool users may have for performing additional tasks, and guidelines that would be helpful in the design of pedestrian navigation tools

    Evidence-based stragegies to inform urban design decision-making: the case of pedestrian movement behaviour.

    Get PDF
    Walking is an essential mode of transportation, and pedestrian movement is a major influencing parameter in city design. Due to the complexity of pedestrian behaviour, new insights concerning the significance of factors affecting walking are challenging to obtain without the use of technology. Furthermore, despite the impact of decision-making in the design of buildings and places, there is currently a limited understanding concerning how urban design decisions are best made. This research aims to “assess the adoption of, and opportunities deriving from, data-driven innovation techniques in the design of urban spaces, by the analysis of pedestrian movement patterns in urban environments, and to evaluate how the integration of evidence-based strategies can be established in supporting decision-making in relation to future urban designs”. The research focuses on two groups of stakeholders: Decision-makers in designing buildings and places and End-users undertaking walking activities within urban space. In addressing the aim, a range of research methodologies has been developed and trialled. The work centres on an extended case study concerning a retail high-street locale in London, UK. This study makes several contributions to the immediate field of urban design research. Firstly, the findings advance the research methods applied to study pedestrian movement in urban environments. Secondly, the results offer real impact in practice by demonstrating the value and importance of adopting data-driven innovation techniques in decision-making processes in urban design via the adoption of a quantitative data- driven, evidence-based methodological framework. Thirdly, the findings support decision-making by presenting a novel methodological framework to assess pedestrian routing in urban environments utilising the classification of pedestrian behaviours and spatial visibility interactions. Finally, this study raises awareness of the critical challenges and opportunities, priorities, and potential development areas for applying evidence- based strategies in informing building and urban design decisions. The research presents a series of recommendations for enhancing data-driven innovation techniques in urban design decision-making processes.Natural Environmental Research (NERC)PhD in Environment and Agrifoo

    Transforming our World through Universal Design for Human Development

    Get PDF
    An environment, or any building product or service in it, should ideally be designed to meet the needs of all those who wish to use it. Universal Design is the design and composition of environments, products, and services so that they can be accessed, understood and used to the greatest extent possible by all people, regardless of their age, size, ability or disability. It creates products, services and environments that meet people’s needs. In short, Universal Design is good design. This book presents the proceedings of UD2022, the 6th International Conference on Universal Design, held from 7 - 9 September 2022 in Brescia, Italy.The conference is targeted at professionals and academics interested in the theme of universal design as related to the built environment and the wellbeing of users, but also covers mobility and urban environments, knowledge, and information transfer, bringing together research knowledge and best practice from all over the world. The book contains 72 papers from 13 countries, grouped into 8 sections and covering topics including the design of inclusive natural environments and urban spaces, communities, neighborhoods and cities; housing; healthcare; mobility and transport systems; and universally- designed learning environments, work places, cultural and recreational spaces. One section is devoted to universal design and cultural heritage, which had a particular focus at this edition of the conference. The book reflects the professional and disciplinary diversity represented in the UD movement, and will be of interest to all those whose work involves inclusive design

    Engaging older adults with age-related macular degeneration in the design and evaluation of mobile assistive technologies

    Get PDF
    Ongoing advances in technology are undoubtedly increasing the scope for enhancing and supporting older adults’ daily living. The digital divide between older and younger adults, however, raises concerns about the suitability of technological solutions for older adults, especially for those with impairments. Taking older adults with Age-Related Macular Degeneration (AMD) – a progressive and degenerative disease of the eye – as a case study, the research reported in this dissertation considers how best to engage older adults in the design and evaluation of mobile assistive technologies to achieve sympathetic design of such technologies. Recognising the importance of good nutrition and the challenges involved in designing for people with AMD, this research followed a participatory and user-centred design (UCD) approach to develop a proof–of–concept diet diary application for people with AMD. Findings from initial knowledge elicitation activities contribute to the growing debate surrounding the issues on how older adults’ participation is initiated, planned and managed. Reflections on the application of the participatory design method highlighted a number of key strategies that can be applied to maintain empathic participatory design rapport with older adults and, subsequently, lead to the formulation of participatory design guidelines for effectively engaging older adults in design activities. Taking a novel approach, the final evaluation study contributed to the gap in the knowledge on how to bring closure to the participatory process in as positive a way as possible, cognisant of the potential negative effect that withdrawal of the participatory process may have on individuals. Based on the results of this study, we ascertain that (a) sympathetic design of technology with older adults will maximise technology acceptance and shows strong indicators for affecting behaviour change; and (b) being involved in the design and development of such technologies has the capacity to significantly improve the quality of life of older adults (with AMD)

    Gathering Momentum: Evaluation of a Mobile Learning Initiative

    Get PDF
    • 

    corecore