923 research outputs found

    Network-based approaches to explore complex biological systems towards network medicine

    Get PDF
    Network medicine relies on different types of networks: from the molecular level of protein–protein interactions to gene regulatory network and correlation studies of gene expression. Among network approaches based on the analysis of the topological properties of protein–protein interaction (PPI) networks, we discuss the widespread DIAMOnD (disease module detection) algorithm. Starting from the assumption that PPI networks can be viewed as maps where diseases can be identified with localized perturbation within a specific neighborhood (i.e., disease modules), DIAMOnD performs a systematic analysis of the human PPI network to uncover new disease-associated genes by exploiting the connectivity significance instead of connection density. The past few years have witnessed the increasing interest in understanding the molecular mechanism of post-transcriptional regulation with a special emphasis on non-coding RNAs since they are emerging as key regulators of many cellular processes in both physiological and pathological states. Recent findings show that coding genes are not the only targets that microRNAs interact with. In fact, there is a pool of different RNAs—including long non-coding RNAs (lncRNAs) —competing with each other to attract microRNAs for interactions, thus acting as competing endogenous RNAs (ceRNAs). The framework of regulatory networks provides a powerful tool to gather new insights into ceRNA regulatory mechanisms. Here, we describe a data-driven model recently developed to explore the lncRNA-associated ceRNA activity in breast invasive carcinoma. On the other hand, a very promising example of the co-expression network is the one implemented by the software SWIM (switch miner), which combines topological properties of correlation networks with gene expression data in order to identify a small pool of genes—called switch genes—critically associated with drastic changes in cell phenotype. Here, we describe SWIM tool along with its applications to cancer research and compare its predictions with DIAMOnD disease genes

    Integrative methods for analyzing big data in precision medicine

    Get PDF
    We provide an overview of recent developments in big data analyses in the context of precision medicine and health informatics. With the advance in technologies capturing molecular and medical data, we entered the area of “Big Data” in biology and medicine. These data offer many opportunities to advance precision medicine. We outline key challenges in precision medicine and present recent advances in data integration-based methods to uncover personalized information from big data produced by various omics studies. We survey recent integrative methods for disease subtyping, biomarkers discovery, and drug repurposing, and list the tools that are available to domain scientists. Given the ever-growing nature of these big data, we highlight key issues that big data integration methods will face

    Integrative methods for analysing big data in precision medicine

    Get PDF
    We provide an overview of recent developments in big data analyses in the context of precision medicine and health informatics. With the advance in technologies capturing molecular and medical data, we entered the area of “Big Data” in biology and medicine. These data offer many opportunities to advance precision medicine. We outline key challenges in precision medicine and present recent advances in data integration-based methods to uncover personalized information from big data produced by various omics studies. We survey recent integrative methods for disease subtyping, biomarkers discovery, and drug repurposing, and list the tools that are available to domain scientists. Given the ever-growing nature of these big data, we highlight key issues that big data integration methods will face

    Graph Representation Learning in Biomedicine

    Full text link
    Biomedical networks are universal descriptors of systems of interacting elements, from protein interactions to disease networks, all the way to healthcare systems and scientific knowledge. With the remarkable success of representation learning in providing powerful predictions and insights, we have witnessed a rapid expansion of representation learning techniques into modeling, analyzing, and learning with such networks. In this review, we put forward an observation that long-standing principles of networks in biology and medicine -- while often unspoken in machine learning research -- can provide the conceptual grounding for representation learning, explain its current successes and limitations, and inform future advances. We synthesize a spectrum of algorithmic approaches that, at their core, leverage graph topology to embed networks into compact vector spaces, and capture the breadth of ways in which representation learning is proving useful. Areas of profound impact include identifying variants underlying complex traits, disentangling behaviors of single cells and their effects on health, assisting in diagnosis and treatment of patients, and developing safe and effective medicines

    The role of network science in glioblastoma

    Get PDF
    Network science has long been recognized as a well-established discipline across many biological domains. In the particular case of cancer genomics, network discovery is challenged by the multitude of available high-dimensional heterogeneous views of data. Glioblastoma (GBM) is an example of such a complex and heterogeneous disease that can be tackled by network science. Identifying the architecture of molecular GBM networks is essential to understanding the information flow and better informing drug development and pre-clinical studies. Here, we review network-based strategies that have been used in the study of GBM, along with the available software implementations for reproducibility and further testing on newly coming datasets. Promising results have been obtained from both bulk and single-cell GBM data, placing network discovery at the forefront of developing a molecularly-informed-based personalized medicine.This work was partially supported by national funds through Fundação para a Ciência e a Tecnologia (FCT) with references CEECINST/00102/2018, CEECIND/00072/2018 and PD/BDE/143154/2019, UIDB/04516/2020, UIDB/00297/2020, UIDB/50021/2020, UIDB/50022/2020, UIDB/50026/2020, UIDP/50026/2020, NORTE-01-0145-FEDER-000013, and NORTE-01-0145-FEDER000023 and projects PTDC/CCI-BIO/4180/2020 and DSAIPA/DS/0026/2019. This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 951970 (OLISSIPO project)

    NON-CODING RNAS IDENTIFY THE INTRINSIC MOLECULAR SUBTYPES OF MUSCLE-INVASIVE BLADDER CANCER

    Get PDF
    NON-CODING RNAS IDENTIFY THE INTRINSIC MOLECULAR SUBTYPES OF MUSCLE-INVASIVE BLADDER CANCER Andrea Elizabeth Ochoa, B.S. Advisory Professors: David J. McConkey, Ph.D. and Joya Chandra, Ph.D. There has been a recent explosion of genomics data in muscle-invasive bladder cancer (MIBC) to better understand the underlying biology of the disease that leads to the high amount of heterogeneity that is seen clinically. These studies have identified relatively stable intrinsic molecular subtypes of MIBC that show similarities to the basal and luminal subtypes of breast cancer. However, previous studies have primarily focused on protein-coding genes or DNA mutations/alterations. There is emerging evidence implicating non-coding RNAs (ncRNAs), both short (miRNA) and long (lncRNA), in the regulation of various biological processes involved in cancer development and progression. The molecular mechanisms of miRNAs are relatively straightforward by inhibiting their mRNA targets, but the molecular mechanisms of lncRNAs are largely unknown. The identification of miRNAs and lncRNAs that contribute to the gene expression patterns of basal and luminal subtypes of MIBC will add another layer of subtype regulation. In this work, we sought to study the differences in miRNA and lncRNA expression across the subtypes of MIBC. We started with TCGA’s cohort of 408 tumors as a discovery cohort to identify differentially expressed miRNAs and lncRNAs that were specific to the basal and luminal subtypes of MIBC. We developed our own miRNA-sequencing data set to perform validation studies, and we found that the mRNA targets of the differentially expressed miRNAs were highly reminiscent of the already known basal and luminal subtype biology. We also developed bioinformatic analyses to extract lncRNA expression data that was used for unsupervised consensus clustering. Surprisingly, unsupervised analyses of the lncRNA expression data revealed two distinct clusters that exhibited more than 90% concordance with the subtype classifications made using mRNA expression data. Taken together, the results presented here suggest that miRNA expression profiles, or lncRNA expression profiles, could be used as an alternative strategy to identify MIBC subtype. These findings could have significant clinical implications in the development of diagnostic tools for MIBC since miRNAs and lncRNAs are both stably expressed in body fluids

    Integrative analyses of transcriptome sequencing identify novel functional lncRNAs in esophageal squamous cell carcinoma.

    Get PDF
    Long non-coding RNAs (lncRNAs) have a critical role in cancer initiation and progression, and thus may mediate oncogenic or tumor suppressing effects, as well as be a new class of cancer therapeutic targets. We performed high-throughput sequencing of RNA (RNA-seq) to investigate the expression level of lncRNAs and protein-coding genes in 30 esophageal samples, comprised of 15 esophageal squamous cell carcinoma (ESCC) samples and their 15 paired non-tumor tissues. We further developed an integrative bioinformatics method, denoted URW-LPE, to identify key functional lncRNAs that regulate expression of downstream protein-coding genes in ESCC. A number of known onco-lncRNA and many putative novel ones were effectively identified by URW-LPE. Importantly, we identified lncRNA625 as a novel regulator of ESCC cell proliferation, invasion and migration. ESCC patients with high lncRNA625 expression had significantly shorter survival time than those with low expression. LncRNA625 also showed specific prognostic value for patients with metastatic ESCC. Finally, we identified E1A-binding protein p300 (EP300) as a downstream executor of lncRNA625-induced transcriptional responses. These findings establish a catalog of novel cancer-associated functional lncRNAs, which will promote our understanding of lncRNA-mediated regulation in this malignancy
    • …
    corecore