1,030 research outputs found

    From data towards knowledge: Revealing the architecture of signaling systems by unifying knowledge mining and data mining of systematic perturbation data

    Get PDF
    Genetic and pharmacological perturbation experiments, such as deleting a gene and monitoring gene expression responses, are powerful tools for studying cellular signal transduction pathways. However, it remains a challenge to automatically derive knowledge of a cellular signaling system at a conceptual level from systematic perturbation-response data. In this study, we explored a framework that unifies knowledge mining and data mining approaches towards the goal. The framework consists of the following automated processes: 1) applying an ontology-driven knowledge mining approach to identify functional modules among the genes responding to a perturbation in order to reveal potential signals affected by the perturbation; 2) applying a graph-based data mining approach to search for perturbations that affect a common signal with respect to a functional module, and 3) revealing the architecture of a signaling system organize signaling units into a hierarchy based on their relationships. Applying this framework to a compendium of yeast perturbation-response data, we have successfully recovered many well-known signal transduction pathways; in addition, our analysis have led to many hypotheses regarding the yeast signal transduction system; finally, our analysis automatically organized perturbed genes as a graph reflecting the architect of the yeast signaling system. Importantly, this framework transformed molecular findings from a gene level to a conceptual level, which readily can be translated into computable knowledge in the form of rules regarding the yeast signaling system, such as "if genes involved in MAPK signaling are perturbed, genes involved in pheromone responses will be differentially expressed"

    Conceptualization of molecular findings by mining gene annotations

    Get PDF
    Background: The Gene Ontology (GO) is an ontology representing molecular biology concepts related to genes and their products. Current annotations from the GO Consortium tend to be highly specific, and contemporary genome-scale studies often return a long list of genes of potential interest, such as genes in a cancer tumor that are differentially expressed than those found in normal tissue. It is therefore a challenging task to reveal, at a conceptual level, the major functional themes in which genes are involved. Presently, there is a need for tools capable of revealing such themes through mining and representing semantic information in an objective and quantitative manner. Methods: In this study, we utilized the hierarchical organization of the GO to derive a more abstract representation of the major biological processes of a list of genes based on their annotations. We cast the task as follows: given a list of genes, identify non-disjoint, functionally coherent subsets, such that the functions of the genes in a subset are summarized by an informative GO term that accurately captures the semantic information of the original annotations. Results: We evaluated different metrics for assessing information loss when merging GO terms, and different statistical schemes to assess the functional coherence of a set of genes. We found that the best discriminative power was achieved by using a combination of the information-content-based measure as the information-loss metric, and the graph-based statistics derived from a Steiner tree connecting genes in an augmented GO graph. Conclusions: Our methods provide an objective and quantitative approach to capturing the major directions of gene functions in a context-specific fashion

    PLoS One

    Get PDF
    MOTIVATION: The recent revolution in new sequencing technologies, as a part of the continuous process of adopting new innovative protocols has strongly impacted the interpretation of relations between phenotype and genotype. Thus, understanding the resulting gene sets has become a bottleneck that needs to be addressed. Automatic methods have been proposed to facilitate the interpretation of gene sets. While statistical functional enrichment analyses are currently well known, they tend to focus on well-known genes and to ignore new information from less-studied genes. To address such issues, applying semantic similarity measures is logical if the knowledge source used to annotate the gene sets is hierarchically structured. In this work, we propose a new method for analyzing the impact of different semantic similarity measures on gene set annotations. RESULTS: We evaluated the impact of each measure by taking into consideration the two following features that correspond to relevant criteria for a "good" synthetic gene set annotation: (i) the number of annotation terms has to be drastically reduced and the representative terms must be retained while annotating the gene set, and (ii) the number of genes described by the selected terms should be as large as possible. Thus, we analyzed nine semantic similarity measures to identify the best possible compromise between both features while maintaining a sufficient level of details. Using Gene Ontology to annotate the gene sets, we obtained better results with node-based measures that use the terms' characteristics than with measures based on edges that link the terms. The annotation of the gene sets achieved with the node-based measures did not exhibit major differences regardless of the characteristics of terms used

    A stochastic model dissects cell states in biological transition processes

    Get PDF
    Many biological processes, including differentiation, reprogramming, and disease transformations, involve transitions of cells through distinct states. Direct, unbiased investigation of cell states and their transitions is challenging due to several factors, including limitations of single-cell assays. Here we present a stochastic model of cellular transitions that allows underlying single-cell information, including cell-state-specific parameters and rates governing transitions between states, to be estimated from genome-wide, population-averaged time-course data. The key novelty of our approach lies in specifying latent stochastic models at the single-cell level, and then aggregating these models to give a likelihood that links parameters at the single-cell level to observables at the population level. We apply our approach in the context of reprogramming to pluripotency. This yields new insights, including profiles of two intermediate cell states, that are supported by independent single-cell studies. Our model provides a general conceptual framework for the study of cell transitions, including epigenetic transformations

    Automated data integration for developmental biological research

    Get PDF
    In an era exploding with genome-scale data, a major challenge for developmental biologists is how to extract significant clues from these publicly available data to benefit our studies of individual genes, and how to use them to improve our understanding of development at a systems level. Several studies have successfully demonstrated new approaches to classic developmental questions by computationally integrating various genome-wide data sets. Such computational approaches have shown great potential for facilitating research: instead of testing 20,000 genes, researchers might test 200 to the same effect. We discuss the nature and state of this art as it applies to developmental research

    A survey of visualization tools for biological network analysis

    Get PDF
    The analysis and interpretation of relationships between biological molecules, networks and concepts is becoming a major bottleneck in systems biology. Very often the pure amount of data and their heterogeneity provides a challenge for the visualization of the data. There are a wide variety of graph representations available, which most often map the data on 2D graphs to visualize biological interactions. These methods are applicable to a wide range of problems, nevertheless many of them reach a limit in terms of user friendliness when thousands of nodes and connections have to be analyzed and visualized. In this study we are reviewing visualization tools that are currently available for visualization of biological networks mainly invented in the latest past years. We comment on the functionality, the limitations and the specific strengths of these tools, and how these tools could be further developed in the direction of data integration and information sharing

    Anti-schistosomal intervention targets identified by lifecycle transcriptomic analyses

    Get PDF
    BACKGROUND: Novel methods to identify anthelmintic drug and vaccine targets are urgently needed, especially for those parasite species currently being controlled by singular, often limited strategies. A clearer understanding of the transcriptional components underpinning helminth development will enable identification of exploitable molecules essential for successful parasite/host interactions. Towards this end, we present a combinatorial, bioinformatics-led approach, employing both statistical and network analyses of transcriptomic data, for identifying new immunoprophylactic and therapeutic lead targets to combat schistosomiasis. METHODOLOGY/PRINCIPAL FINDINGS: Utilisation of a Schistosoma mansoni oligonucleotide DNA microarray consisting of 37,632 elements enabled gene expression profiling from 15 distinct parasite lifecycle stages, spanning three unique ecological niches. Statistical approaches of data analysis revealed differential expression of 973 gene products that minimally describe the three major characteristics of schistosome development: asexual processes within intermediate snail hosts, sexual maturation within definitive vertebrate hosts and sexual dimorphism amongst adult male and female worms. Furthermore, we identified a group of 338 constitutively expressed schistosome gene products (including 41 transcripts sharing no sequence similarity outside the Platyhelminthes), which are likely to be essential for schistosome lifecycle progression. While highly informative, statistics-led bioinformatics mining of the transcriptional dataset has limitations, including the inability to identify higher order relationships between differentially expressed transcripts and lifecycle stages. Network analysis, coupled to Gene Ontology enrichment investigations, facilitated a re-examination of the dataset and identified 387 clusters (containing 12,132 gene products) displaying novel examples of developmentally regulated classes (including 294 schistosomula and/or adult transcripts with no known sequence similarity outside the Platyhelminthes), which were undetectable by the statistical comparisons. CONCLUSIONS/SIGNIFICANCE: Collectively, statistical and network-based exploratory analyses of transcriptomic datasets have led to a thorough characterisation of schistosome development. Information obtained from these experiments highlighted key transcriptional programs associated with lifecycle progression and identified numerous anti-schistosomal candidate molecules including G-protein coupled receptors, tetraspanins, Dyp-type peroxidases, fucosyltransferases, leishmanolysins and the netrin/netrin receptor complex

    On Computable Protein Functions

    Get PDF
    Proteins are biological machines that perform the majority of functions necessary for life. Nature has evolved many different proteins, each of which perform a subset of an organism’s functional repertoire. One aim of biology is to solve the sparse high dimensional problem of annotating all proteins with their true functions. Experimental characterisation remains the gold standard for assigning function, but is a major bottleneck due to resource scarcity. In this thesis, we develop a variety of computational methods to predict protein function, reduce the functional search space for proteins, and guide the design of experimental studies. Our methods take two distinct approaches: protein-centric methods that predict the functions of a given protein, and function-centric methods that predict which proteins perform a given function. We applied our methods to help solve a number of open problems in biology. First, we identified new proteins involved in the progression of Alzheimer’s disease using proteomics data of brains from a fly model of the disease. Second, we predicted novel plastic hydrolase enzymes in a large data set of 1.1 billion protein sequences from metagenomes. Finally, we optimised a neural network method that extracts a small number of informative features from protein networks, which we used to predict functions of fission yeast proteins

    Breaking the paradigm: Dr Insight empowers signature-free, enhanced drug repurposing

    Get PDF
    Motivation: Transcriptome-based computational drug repurposing has attracted considerable interest by bringing about faster and more cost-effective drug discovery. Nevertheless, key limitations of the current drug connectivity-mapping paradigm have been long overlooked, including the lack of effective means to determine optimal query gene signatures. Results: The novel approach Dr Insight implements a frame-breaking statistical model for the ‘hand-shake’ between disease and drug data. The genome-wide screening of concordantly expressed genes (CEGs) eliminates the need for subjective selection of query signatures, added to eliciting better proxy for potential disease-specific drug targets. Extensive comparisons on simulated and real cancer datasets have validated the superior performance of Dr Insight over several popular drug-repurposing methods to detect known cancer drugs and drug–target interactions. A proof-of-concept trial using the TCGA breast cancer dataset demonstrates the application of Dr Insight for a comprehensive analysis, from redirection of drug therapies, to a systematic construction of disease-specific drug-target networks
    corecore