1,828 research outputs found

    Unicode-driven Deep Learning Handwritten Telugu-to-English Character Recognition and Translation System

    Get PDF
    Telugu language is considered as fourth most used language in India especially in the regions of Andhra Pradesh, Telangana, Karnataka etc. In international recognized countries also, Telugu is widely growing spoken language. This language comprises of different dependent and independent vowels, consonants and digits. In this aspect, the enhancement of Telugu Handwritten Character Recognition (HCR) has not been propagated. HCR is a neural network technique of converting a documented image to edited text one which can be used for many other applications. This reduces time and effort without starting over from the beginning every time. In this work, a Unicode based Handwritten Character Recognition(U-HCR) is developed for translating the handwritten Telugu characters into English language. With the use of Centre of Gravity (CG) in our model we can easily divide a compound character into individual character with the help of Unicode values. For training this model, we have used both online and offline Telugu character datasets. To extract the features in the scanned image we used convolutional neural network along with Machine Learning classifiers like Random Forest and Support Vector Machine. Stochastic Gradient Descent (SGD), Root Mean Square Propagation (RMS-P) and Adaptative Moment Estimation (ADAM)optimizers are used in this work to enhance the performance of U-HCR and to reduce the loss function value. This loss value reduction can be possible with optimizers by using CNN. In both online and offline datasets, proposed model showed promising results by maintaining the accuracies with 90.28% for SGD, 96.97% for RMS-P and 93.57% for ADAM respectively

    LemurFaceID: a face recognition system to facilitate individual identification of lemurs

    Full text link
    Background: Long-term research of known individuals is critical for understanding the demographic and evolutionary processes that influence natural populations. Current methods for individual identification of many animals include capture and tagging techniques and/or researcher knowledge of natural variation in individual phenotypes. These methods can be costly, time-consuming, and may be impractical for larger-scale, populationlevel studies. Accordingly, for many animal lineages, long-term research projects are often limited to only a few taxa. Lemurs, a mammalian lineage endemic to Madagascar, are no exception. Long-term data needed to address evolutionary questions are lacking for many species. This is, at least in part, due to difficulties collecting consistent data on known individuals over long periods of time. Here, we present a new method for individual identification of lemurs (LemurFaceID). LemurFaceID is a computer-assisted facial recognition system that can be used to identify individual lemurs based on photographs. Results: LemurFaceID was developed using patch-wise Multiscale Local Binary Pattern features and modified facial image normalization techniques to reduce the effects of facial hair and variation in ambient lighting on identification. We trained and tested our system using images from wild red-bellied lemurs (Eulemur rubriventer) collected in Ranomafana National Park, Madagascar. Across 100 trials, with different partitions of training and test sets, we demonstrate that the LemurFaceID can achieve 98.7% ± 1.81% accuracy (using 2-query image fusion) in correctly identifying individual lemurs. Conclusions: Our results suggest that human facial recognition techniques can be modified for identification of individual lemurs based on variation in facial patterns. LemurFaceID was able to identify individual lemurs based on photographs of wild individuals with a relatively high degree of accuracy. This technology would remove many limitations of traditional methods for individual identification. Once optimized, our system can facilitate long-term research of known individuals by providing a rapid, cost-effective, and accurate method for individual identification

    Pre-trained models are not enough: active and lifelong learning is important for long-term visual monitoring of mammals in biodiversity research—Individual identification and attribute prediction with image features from deep neural networks and decoupled decision models applied to elephants and great apes

    Get PDF
    Animal re-identification based on image data, either recorded manually by photographers or automatically with camera traps, is an important task for ecological studies about biodiversity and conservation that can be highly automatized with algorithms from computer vision and machine learning. However, fixed identification models only trained with standard datasets before their application will quickly reach their limits, especially for long-term monitoring with changing environmental conditions, varying visual appearances of individuals over time that differ a lot from those in the training data, and new occurring individuals that have not been observed before. Hence, we believe that active learning with human-in-the-loop and continuous lifelong learning is important to tackle these challenges and to obtain high-performance recognition systems when dealing with huge amounts of additional data that become available during the application. Our general approach with image features from deep neural networks and decoupled decision models can be applied to many different mammalian species and is perfectly suited for continuous improvements of the recognition systems via lifelong learning. In our identification experiments, we consider four different taxa, namely two elephant species: African forest elephants and Asian elephants, as well as two species of great apes: gorillas and chimpanzees. Going beyond classical re-identification, our decoupled approach can also be used for predicting attributes of individuals such as gender or age using classification or regression methods. Although applicable for small datasets of individuals as well, we argue that even better recognition performance will be achieved by improving decision models gradually via lifelong learning to exploit huge datasets and continuous recordings from long-term applications. We highlight that algorithms for deploying lifelong learning in real observational studies exist and are ready for use. Hence, lifelong learning might become a valuable concept that supports practitioners when analyzing large-scale image data during long-term monitoring of mammals

    A pilot investigation of a wildlife tourism experience using photographs shared to social media: Case study on the endangered Borneo Pygmy Elephant

    Get PDF
    The increasing popularity of social media in the last decade has led to a considerable amount of user-generated content being shared online, with personal photography representing a significant portion of this. At the same time, the application of social media data to scientific research has also gained momentum. This thesis presents a preliminary exploration of how tourist-generated photographs sourced from social media can be applied to the analysis of both wildlife and social based dimensions of wildlife tourism experiences. To demonstrate proof of concept and a framework for how this approach can be employed, a case study on the viewing of Borneo Pygmy Elephants during riverboat tours along the Lower Kinabatangan River in Sabah, Malaysia from August to October 2017 is provided. The wildlife-centred research presented in this study found that 73% of the reported elephant sightings occurred within 1 km of agricultural land adjacent to the river (predominantly being oil palm plantations). This finding was reflected in the results of the social analysis on tourist responses to elephant-viewing along the river, with 30% of photograph captions on Instagram making reference to conservation issues, including the loss of natural forest habitat. To ensure sustainability of elephant-viewing tourism at this destination, site specific management requires ongoing and real-time information, particularly relating to landscape level issues. The findings of this pilot study suggest that social media derived content can be used to supplement and enhance understanding of wildlife tourism experiences by providing up-to-date information pertaining to visitor experience and the location and conditions under which wildlife is observed. The study also highlights the benefit of adopting a multiple-platform approach to researching different aspects of wildlife tourism, reflecting the different ways that social media platforms are used. Further work is required to validate and assess the reliability of data sourced from social media against traditionally collected empirical data in order to extend this approach to larger datasets

    Learning Visual Patterns: Imposing Order on Objects, Trajectories and Networks

    Get PDF
    Fundamental to many tasks in the field of computer vision, this work considers the understanding of observed visual patterns in static images and dynamic scenes . Within this broad domain, we focus on three particular subtasks, contributing novel solutions to: (a) the subordinate categorization of objects (avian species specifically), (b) the analysis of multi-agent interactions using the agent trajectories, and (c) the estimation of camera network topology. In contrast to object recognition, where the presence or absence of certain parts is generally indicative of basic-level category, the problem of subordinate categorization rests on the ability to establish salient distinctions amongst the characteristics of those parts which comprise the basic-level category. Focusing on an avian domain due to the fine-grained structure of the category taxonomy, we explore a pose-normalized appearance model based on a volumetric poselet scheme. The variation in shape and appearance properties of these parts across a taxonomy provides the cues needed for subordinate categorization. Our model associates the underlying image pattern parameters used for detection with corresponding volumetric part location, scale and orientation parameters. These parameters implicitly define a mapping from the image pixels into a pose-normalized appearance space, removing view and pose dependencies, facilitating fine-grained categorization with relatively few training examples. We next examine the problem of leveraging trajectories to understand interactions in dynamic multi-agent environments. We focus on perceptual tasks, those for which an agent's behavior is governed largely by the individuals and objects around them. We introduce kinetic accessibility, a model for evaluating the perceived, and thus anticipated, movements of other agents. This new model is then applied to the analysis of basketball footage. The kinetic accessibility measures are coupled with low-level visual cues and domain-specific knowledge for determining which player has possession of the ball and for recognizing events such as passes, shots and turnovers. Finally, we present two differing approaches for estimating camera network topology. The first technique seeks to partition a set of observations made in the camera network into individual object trajectories. As exhaustive consideration of the partition space is intractable, partitions are considered incrementally, adding observations while pruning unlikely partitions. Partition likelihood is determined by the evaluation of a probabilistic graphical model, balancing the consistency of appearances across a hypothesized trajectory with the latest predictions of camera adjacency. A primarily benefit of estimating object trajectories is that higher-order statistics, as opposed to just first-order adjacency, can be derived, yielding resilience to camera failure and the potential for improved tracking performance between cameras. Unlike the former centralized technique, the latter takes a decentralized approach, estimating the global network topology with local computations using sequential Bayesian estimation on a modified multinomial distribution. Key to this method is an information-theoretic appearance model for observation weighting. The inherently distributed nature of the approach allows the simultaneous utilization of all sensors as processing agents in collectively recovering the network topology

    Deep Probabilistic Models for Camera Geo-Calibration

    Get PDF
    The ultimate goal of image understanding is to transfer visual images into numerical or symbolic descriptions of the scene that are helpful for decision making. Knowing when, where, and in which direction a picture was taken, the task of geo-calibration makes it possible to use imagery to understand the world and how it changes in time. Current models for geo-calibration are mostly deterministic, which in many cases fails to model the inherent uncertainties when the image content is ambiguous. Furthermore, without a proper modeling of the uncertainty, subsequent processing can yield overly confident predictions. To address these limitations, we propose a probabilistic model for camera geo-calibration using deep neural networks. While our primary contribution is geo-calibration, we also show that learning to geo-calibrate a camera allows us to implicitly learn to understand the content of the scene
    corecore