66,754 research outputs found

    Towards Business Integration as a Service 2.0

    No full text
    Cloud Computing Business Framework (CCBF) is a framework for designing and implementation of Could Computing solutions. This proposal focuses on how CCBF can help to address linkage in Cloud Computing implementations. This leads to the development of Business Integration as a Service 1.0 (BIaS 1.0) allowing different services, roles and functionalities to work together in a linkage-oriented framework where the outcome of one service can be input to another, without the need to translate between domains or languages. BIaS 2.0 aims to allow full automation, enhanced security, advanced risk modelling and improved collaboration between processes in BIaaS 1.0. The benefits from adopting BIaS 1.0 and developing BIaS 2.0 are illustrated using a case study from the University of Southampton and several collaborators including IBM US. BIaS 2.0 can work with mainstream technologies such as scientific workflows, and the proposal and demonstration of BIaaS 2.0 will certainly benefit industry and academia

    Towards business integration as a service 2.0 (BIaaS 2.0)

    Get PDF
    Cloud Computing Business Framework (CCBF) is a framework for designing and implementation of Could Computing solutions. This proposal focuses on how CCBF can help to address linkage in Cloud Computing implementations. This leads to the development of Business Integration as a Service 1.0 (BIaaS 1.0) allowing different services, roles and functionalities to work together in a linkage-oriented framework where the outcome of one service can be input to another, without the need to translate between domains or languages. BIaaS 2.0 aims to allow automation, enhanced security, advanced risk modelling and improved collaboration between processes in BIaaS 1.0. The benefits from adopting BIaaS 1.0 and developing BIaaS 2.0 are illustrated using a case study from the University of Southampton and several collaborators including IBM US. BIaaS 2.0 can work with mainstream technologies such as scientific workflows, and the proposal and demonstration of BIaaS 2.0 will be aimed to certainly benefit industry and academia. © 2011 IEEE

    Report from GI-Dagstuhl Seminar 16394: Software Performance Engineering in the DevOps World

    Get PDF
    This report documents the program and the outcomes of GI-Dagstuhl Seminar 16394 "Software Performance Engineering in the DevOps World". The seminar addressed the problem of performance-aware DevOps. Both, DevOps and performance engineering have been growing trends over the past one to two years, in no small part due to the rise in importance of identifying performance anomalies in the operations (Ops) of cloud and big data systems and feeding these back to the development (Dev). However, so far, the research community has treated software engineering, performance engineering, and cloud computing mostly as individual research areas. We aimed to identify cross-community collaboration, and to set the path for long-lasting collaborations towards performance-aware DevOps. The main goal of the seminar was to bring together young researchers (PhD students in a later stage of their PhD, as well as PostDocs or Junior Professors) in the areas of (i) software engineering, (ii) performance engineering, and (iii) cloud computing and big data to present their current research projects, to exchange experience and expertise, to discuss research challenges, and to develop ideas for future collaborations

    Big Data and the Internet of Things

    Full text link
    Advances in sensing and computing capabilities are making it possible to embed increasing computing power in small devices. This has enabled the sensing devices not just to passively capture data at very high resolution but also to take sophisticated actions in response. Combined with advances in communication, this is resulting in an ecosystem of highly interconnected devices referred to as the Internet of Things - IoT. In conjunction, the advances in machine learning have allowed building models on this ever increasing amounts of data. Consequently, devices all the way from heavy assets such as aircraft engines to wearables such as health monitors can all now not only generate massive amounts of data but can draw back on aggregate analytics to "improve" their performance over time. Big data analytics has been identified as a key enabler for the IoT. In this chapter, we discuss various avenues of the IoT where big data analytics either is already making a significant impact or is on the cusp of doing so. We also discuss social implications and areas of concern.Comment: 33 pages. draft of upcoming book chapter in Japkowicz and Stefanowski (eds.) Big Data Analysis: New algorithms for a new society, Springer Series on Studies in Big Data, to appea
    • 

    corecore