2,778 research outputs found

    Chi-square-based scoring function for categorization of MEDLINE citations

    Full text link
    Objectives: Text categorization has been used in biomedical informatics for identifying documents containing relevant topics of interest. We developed a simple method that uses a chi-square-based scoring function to determine the likelihood of MEDLINE citations containing genetic relevant topic. Methods: Our procedure requires construction of a genetic and a nongenetic domain document corpus. We used MeSH descriptors assigned to MEDLINE citations for this categorization task. We compared frequencies of MeSH descriptors between two corpora applying chi-square test. A MeSH descriptor was considered to be a positive indicator if its relative observed frequency in the genetic domain corpus was greater than its relative observed frequency in the nongenetic domain corpus. The output of the proposed method is a list of scores for all the citations, with the highest score given to those citations containing MeSH descriptors typical for the genetic domain. Results: Validation was done on a set of 734 manually annotated MEDLINE citations. It achieved predictive accuracy of 0.87 with 0.69 recall and 0.64 precision. We evaluated the method by comparing it to three machine learning algorithms (support vector machines, decision trees, na\"ive Bayes). Although the differences were not statistically significantly different, results showed that our chi-square scoring performs as good as compared machine learning algorithms. Conclusions: We suggest that the chi-square scoring is an effective solution to help categorize MEDLINE citations. The algorithm is implemented in the BITOLA literature-based discovery support system as a preprocessor for gene symbol disambiguation process.Comment: 34 pages, 2 figure

    In the pursuit of a semantic similarity metric based on UMLS annotations for articles in PubMed Central

    Get PDF
    Motivation Although full-text articles are provided by the publishers in electronic formats, it remains a challenge to find related work beyond the title and abstract context. Identifying related articles based on their abstract is indeed a good starting point; this process is straightforward and does not consume as many resources as full-text based similarity would require. However, further analyses may require in-depth understanding of the full content. Two articles with highly related abstracts can be substantially different regarding the full content. How similarity differs when considering title-and-abstract versus full-text and which semantic similarity metric provides better results when dealing with full-text articles are the main issues addressed in this manuscript. Methods We have benchmarked three similarity metrics – BM25, PMRA, and Cosine, in order to determine which one performs best when using concept-based annotations on full-text documents. We also evaluated variations in similarity values based on title-and-abstract against those relying on full-text. Our test dataset comprises the Genomics track article collection from the 2005 Text Retrieval Conference. Initially, we used an entity recognition software to semantically annotate titles and abstracts as well as full-text with concepts defined in the Unified Medical Language System (UMLS®). For each article, we created a document profile, i.e., a set of identified concepts, term frequency, and inverse document frequency; we then applied various similarity metrics to those document profiles. We considered correlation, precision, recall, and F1 in order to determine which similarity metric performs best with concept-based annotations. For those full-text articles available in PubMed Central Open Access (PMC-OA), we also performed dispersion analyses in order to understand how similarity varies when considering full-text articles. Results We have found that the PubMed Related Articles similarity metric is the most suitable for full-text articles annotated with UMLS concepts. For similarity values above 0.8, all metrics exhibited an F1 around 0.2 and a recall around 0.1; BM25 showed the highest precision close to 1; in all cases the concept-based metrics performed better than the word-stem-based one. Our experiments show that similarity values vary when considering only title-and-abstract versus full-text similarity. Therefore, analyses based on full-text become useful when a given research requires going beyond title and abstract, particularly regarding connectivity across articles. Availability Visualization available at ljgarcia.github.io/semsim.benchmark/, data available at http://dx.doi.org/10.5281/zenodo.13323.The authors acknowledge the support from the members of Temporal Knowledge Bases Group at Universitat Jaume I. Funding: LJGC and AGC are both self-funded, RB is funded by the “Ministerio de Economía y Competitividad” with contract number TIN2011-24147

    Novel metrics for evaluating the functional coherence of protein groups via protein semantic network

    Get PDF
    Metrics are presented for assessing overall functional coherence of a group of proteins based on the associated biomedical literature

    Finding Complex Biological Relationships in Recent PubMed Articles Using Bio-LDA

    Get PDF
    The overwhelming amount of available scholarly literature in the life sciences poses significant challenges to scientists wishing to keep up with important developments related to their research, but also provides a useful resource for the discovery of recent information concerning genes, diseases, compounds and the interactions between them. In this paper, we describe an algorithm called Bio-LDA that uses extracted biological terminology to automatically identify latent topics, and provides a variety of measures to uncover putative relations among topics and bio-terms. Relationships identified using those approaches are combined with existing data in life science datasets to provide additional insight. Three case studies demonstrate the utility of the Bio-LDA model, including association predication, association search and connectivity map generation. This combined approach offers new opportunities for knowledge discovery in many areas of biology including target identification, lead hopping and drug repurposing.Comment: 14 pages, 8 figures, 10 table

    The devices, experimental scaffolds, and biomaterials ontology (DEB): a tool for mapping, annotation, and analysis of biomaterials' data

    Get PDF
    The size and complexity of the biomaterials literature makes systematic data analysis an excruciating manual task. A practical solution is creating databases and information resources. Implant design and biomaterials research can greatly benefit from an open database for systematic data retrieval. Ontologies are pivotal to knowledge base creation, serving to represent and organize domain knowledge. To name but two examples, GO, the gene ontology, and CheBI, Chemical Entities of Biological Interest ontology and their associated databases are central resources to their respective research communities. The creation of the devices, experimental scaffolds, and biomaterials ontology (DEB), an open resource for organizing information about biomaterials, their design, manufacture, and biological testing, is described. It is developed using text analysis for identifying ontology terms from a biomaterials gold standard corpus, systematically curated to represent the domain's lexicon. Topics covered are validated by members of the biomaterials research community. The ontology may be used for searching terms, performing annotations for machine learning applications, standardized meta-data indexing, and other cross-disciplinary data exploitation. The input of the biomaterials community to this effort to create data-driven open-access research tools is encouraged and welcomed.Preprin

    Statistical modeling of biomedical corpora: mining the Caenorhabditis Genetic Center Bibliography for genes related to life span

    Get PDF
    BACKGROUND: The statistical modeling of biomedical corpora could yield integrated, coarse-to-fine views of biological phenomena that complement discoveries made from analysis of molecular sequence and profiling data. Here, the potential of such modeling is demonstrated by examining the 5,225 free-text items in the Caenorhabditis Genetic Center (CGC) Bibliography using techniques from statistical information retrieval. Items in the CGC biomedical text corpus were modeled using the Latent Dirichlet Allocation (LDA) model. LDA is a hierarchical Bayesian model which represents a document as a random mixture over latent topics; each topic is characterized by a distribution over words. RESULTS: An LDA model estimated from CGC items had better predictive performance than two standard models (unigram and mixture of unigrams) trained using the same data. To illustrate the practical utility of LDA models of biomedical corpora, a trained CGC LDA model was used for a retrospective study of nematode genes known to be associated with life span modification. Corpus-, document-, and word-level LDA parameters were combined with terms from the Gene Ontology to enhance the explanatory value of the CGC LDA model, and to suggest additional candidates for age-related genes. A novel, pairwise document similarity measure based on the posterior distribution on the topic simplex was formulated and used to search the CGC database for "homologs" of a "query" document discussing the life span-modifying clk-2 gene. Inspection of these document homologs enabled and facilitated the production of hypotheses about the function and role of clk-2. CONCLUSION: Like other graphical models for genetic, genomic and other types of biological data, LDA provides a method for extracting unanticipated insights and generating predictions amenable to subsequent experimental validation
    • …
    corecore